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a b s t r a c t

Melnikov’s method is presented for a general nonlinear vibro-impact oscillator, and
Melnikov function for homoclinic orbits is obtained analytically. A Duffing vibro-impact
oscillator is given to illustrate the application of the procedures. The obtained results are
verified by the phase portrait, Poincaré surface of section and bifurcation diagrams.
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1. Introduction

In recent years, a considerable amount of research activity has focused on non-smooth dynamical systems, including
vibro-impact systems [1–3], collision dynamics [4], electronic circuits [5] and stick-slipmotions [6] and so on. These systems
often exhibit very complicated dynamics, such as periodic-adding cascades [7,8], and so called non-smooth bifurcations [9–
13] (including grazing bifurcations, border-collision bifurcations and sliding bifurcations).
By calculating the distance between the stable and unstablemanifold, Melnikov’smethod [14] is a powerful approximate

tool for investigating chaos occurrence in near Hamiltonian systems, and has been successfully applied to the analysis of
chaos in smooth systems. To our knowledge, the existence of a simple zero of the Melnikov function implies the possible
occurrence of chaos in the sense of Smale horseshoes. In particular, for planar non-smooth systems, Chow and Shaw [15,16]
explored the bifurcations and chaos in linear systems with impacts via Melnikov’s method. Kunze [17] and Kukucka [18]
discussed the Melnikov function for some special planar non-smooth systems without sliding. But the procedure proposed
in Refs. [15–18] is only valid for piecewise linear systems. Du and Zhang [19] proposed Melnikov’s method for nonlinear
impact oscillators. Awrejcewicz [20–23] discussed the chaos prediction in non-smooth systems with sliding, by the derived
Melnikov function.
In the paper, based on the heuristic level in Ref. [17], we constructed the Melnikov function for homoclinic orbits in a

general nonlinear vibro-impact oscillator, and the obtained analytical conditions of the threshold of chaos are verified by
some numerical results. This paper is organized as follows. In Section 2, the Melnikov function for the homoclinic orbits is
constructed. In Section 3, as a typical example, a double-well Duffing vibro-impact oscillator is considered. Moreover, the
analytical results are verified numerically. At last, the conclusions are given.
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Fig. 1. The homoclinic orbits of the unperturbed system.

2. Melnikov function for homoclinic orbits

A general nonlinear vibro-impact oscillator is considered. The model is nonlinear oscillators with constraints which lead
to motions with impacts. The motion of the oscillator between impacts is governed as follows:

ẍ = f (x)+ εg(x, ẋ, t), |x| < h (1)

whereas the impact is assumed as instantaneous, and the impact law is

ẋ+ = −rẋ−, |x| = h, (2)

where h is the nonnegative constant, and the r is the restitution coefficient depicting the impact energy losses, subscripts
‘‘−’’ and ‘‘+’’ denote the instants just before and after impacts. The left and right boundary functions are defined as

H(x, ẋ) = |x| − h. (3)

First we take r = 1−εr0 ∈ (0, 1] in order tomake use of the globally computable solutions of the unperturbed integrable
system. The system governed by Eqs. (1) and (2) can be rewritten in the following form:

maineqLabel(4)Ẋ = F(X)+ εG(X, t), H(X) < 0, (4a)
X+ = P ∗ X−, H(X) = 0, (4b)

where

X =
[
X1
X2

]
=

[
x
ẋ

]
, P =

[
1 0
0 −(1− εr0)

]
, F(X) =

[
f1(X)
f2(X)

]
, G(X, t) =

[
g1(X, t)
g2(X, t)

]
,

f1(X) = X2, f2(X) = f (X), g1(X, t) = 0, g2(X, t) = g(X, t).

Based on the Melnikov’s theory in Ref. [14], we outline the following similar assumptions for the system (4):

(A1) The functions F and G are sufficiently smooth (C r , r > 1) and bounded, and G is T -periodic function in t .
(A2) For ε = 0 in the system (4), we assume that the unperturbed system is a Hamiltonian one and possesses a homoclinic

orbit Xh(t) connecting the hyperbolic saddle point p0 = (0, 0).

By the assumption (A2), the unperturbed system (i.e. ε = 0 in Eqs. (4)) possesses a unique saddle equilibrium p0(0, 0),
two homoclinic orbits Γ 0

+
= AOB and Γ 0

−
= COD, which are shown in Fig. 1. The corresponding arrowheads represent the

direction of stable (= s) and unstable (= u) manifoldsW s0 ,W
u
0 of p0.

Equivalently, the system (4) can be suspended as follows:

maineqLabel(5)Ẋ = F(X)+ εG(X, θ), H(X) < 0, (5a)

X+ = P ∗ X−, H(X) = 0, θ̇ = 1, (5b)

where θ = t (mod T ). The Poincaré section is taken as

Σt0 =
{
(θ, X) ∈ S1 × R2|θ = t0 ∈ [0, T ]

}
. (6)
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