Contents lists available at ScienceDirect

Nonlinear Analysis

Bifurcation of sign-changing solutions for one-dimensional p-Laplacian with a strong singular weight; p-sublinear at ∞

In this paper, we consider one-dimensional *p*-Laplacian problems with a singular weight

which may not be in L^1 . Using the properties of eigenfunctions and the global bifurcation

theory, we prove existence, uniqueness, nonexistence and multiplicity results of positive solutions as well as sign-changing solutions specially when the nonlinear term is *p*-linear

ABSTRACT

near 0 and *p*-sublinear at ∞ .

Ryuji Kajikiya ^{a,1}, Yong-Hoon Lee^{b,*}, Inbo Sim^{b,2}

^a Nagasaki Institute of Applied Science, 536 Aba-machi, Nagasaki 851-0193, Japan
^b Department of Mathematics, Pusan National University, Busan 609-735, Republic of Korea

ARTICLE INFO

Article history: Received 30 July 2008 Accepted 6 November 2008

MSC: 34B09 34B16 34C23

Keywords: p-Laplace equation Singular weight Leray–Schauder degree Bifurcation Positive solutions Sign-changing solutions

1. Introduction

In this paper, we consider the following one-dimensional *p*-Laplacian problem with a coefficient function

$$\begin{cases} \varphi_p(u'(t))' + \lambda h(t) f(u(t)) = 0, & \text{a.e. in } (0, 1), \\ u(0) = u(1) = 0, \end{cases}$$
(P_{\lambda})

where $\varphi_p(s) = |s|^{p-2}s$, p > 1, λ is a nonnegative parameter, $f \in C(\mathbb{R}, \mathbb{R})$ and h is a nonnegative measurable function on (0, 1), $h \neq 0$ on any compact subinterval in (0, 1).

Existence, nonexistence and multiplicity of nontrivial solutions for problems of the form (P_{λ}) were recently studied by several authors, e.g., for positive solutions by [1–7] and for sign-changing solutions by [8–11].

Our main concern here is to study the existence of positive solutions as well as sign-changing solutions when *f* satisfies (F1) sf(s) > 0 for $s \neq 0$,

(F2) $0 < f_0 \equiv \lim_{s \to 0} f(s)/\varphi_p(s) < \infty$, (F3) $f_\infty \equiv \lim_{|s| \to \infty} f(s)/\varphi_p(s) = 0$

and specially when the weight *h* is singular at the boundary with possibility $h \notin L^1(0, 1)$.

0362-546X/\$ – see front matter 0 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2008.11.056

© 2008 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +82 51 510 2295; fax: +82 51 581 1458.

E-mail addresses: kajikiya_ryuji@nias.ac.jp, kajikiya@ms.saga-u.ac.jp (R. Kajikiya), yhlee@pusan.ac.kr (Y.-H. Lee), siminbo@pusan.ac.kr (I. Sim).

¹ Current Address: Department of Mathematics, Faculty of Science and Engineering, Saga University, Saga, 840-8502, Japan.

² Current Address: Department of Mathematics, University of Ulsan, Ulsan 680-749, Republic of Korea.

For the continuous weight case, Naito–Tanaka [11,12] recently studied the existence of positive solutions and sign-changing solutions. Assuming (F1), (F2), (F3) and

(NT1) f is locally Lipschitz continuous on $\mathbb{R} \setminus \{0\}$ (NT2) $h \in C^1[0, 1]$ and h > 0, on [0, 1],

they prove that for each $k \in \mathbb{N}$, problem (P_{λ}) has at least two (k - 1)-nodal solutions for $\lambda \in (\mu_k, \infty)$ and no (k - 1)-nodal solution for $\lambda \in (0, \frac{f_0}{f^*}\mu_k)$, where μ_k is the *k*th eigenvalue of

$$\begin{cases} \varphi_p(u'(t))' + \lambda f_0 h(t) \varphi_p(u(t)) = 0, & \text{a.e. in } (0, 1), \\ u(0) = u(1) = 0 \end{cases}$$
(E_{\lambda}) (E_{\lambda})

and $f^* \triangleq \sup_{s \in \mathbb{R} \setminus \{0\}} \frac{f(s)}{\varphi_p(s)}$. Here, we mean (λ, u) a *k*-nodal solution of (P_{λ}) . if *u* has exactly *k* zeros in the interval (0, 1). Thus a 0-nodal solution means a positive solution or a negative solution.

Proofs are mainly employed by the shooting method together with the qualitative theory for half-linear differential equations. One may refer to Lee–Sim [8] who give a partial result for the existence of sign-changing solutions when $h \in L^1(0, 1)$. Precisely, assuming (F1),(F2) and (F3) with oddity of f, they prove that for each $k \in \mathbb{N}$, problem (P_{λ}) has at least two (k - 1)-nodal solutions for $\lambda \in (\mu_k, \infty)$. One also refers to Zhang [13] for the existence of eigenvalues and properties like (i)–(iv) in Theorem 3.1 of (E_{λ}) up to $h \in L^1((0, 1), \mathbb{R}_+)$ where $\mathbb{R}_+ = [0, \infty)$.

For the singular weight case, Agarwal–Lü–O'Regan [1] studied the existence of positive solutions. Assume (F2) and (F3) for $f \in C(\mathbb{R}_+, \mathbb{R}_+)$. Also assume that h satisfies

$$\int_0^{\frac{1}{2}} \varphi_p^{-1}\left(\int_s^{\frac{1}{2}} h(\tau) \mathrm{d}\tau\right) \mathrm{d}s + \int_{\frac{1}{2}}^{1} \varphi_p^{-1}\left(\int_{\frac{1}{2}}^s h(\tau) \mathrm{d}\tau\right) \mathrm{d}s < \infty.$$

Then they prove that (P_{λ}) has at least one positive solution for $\lambda \in (\frac{1}{f_0 \varphi_p(\alpha)}, \infty)$, where α is determined by the above double integral condition on h.

In what follows, it is interesting to consider the existence of sign-changing solutions under the above double integral condition. But as far as the authors know, this is highly not obvious by the following two reasons;

- (I) Well definedness of corresponding operator equation for sign-changing solutions is not clear.
- (II) Isolation of eigenvalues of (E_{λ}) is not guaranteed. (The authors understand that this is a difficult question, see [14]).

As the main condition of *h* for this paper, we introduce the following;

$$\int_0^1 s^{p-1} (1-s)^{p-1} h(s) \mathrm{d} s < \infty.$$

Recently, the authors [15] prove the existence of eigenvalues of (E_{λ}) when *h* satisfies the integral condition (see Theorem 3.1 in Section 3). Based on this theorem, we will apply bifurcation theory to study the existence of sign-changing solutions for (P_{λ}) . Our results extend those of Naito–Tanaka [11], Lee–Sim [8] as well as Agarwal–Lü–O'Regan [1] in some directions.

There are some interesting relations between the above two integral conditions. For convenience, let

$$\mathcal{A} \equiv \left\{ h \in L^{1}_{loc}(0, 1) : \int_{0}^{1} s^{p-1} (1-s)^{p-1} h(s) ds < \infty \right\}.$$

$$\mathcal{B} \equiv \left\{ h \in L^{1}_{loc} : \int_{0}^{\frac{1}{2}} \varphi_{p}^{-1} \left(\int_{s}^{\frac{1}{2}} h(\tau) d\tau \right) ds + \int_{\frac{1}{2}}^{1} \varphi_{p}^{-1} \left(\int_{\frac{1}{2}}^{s} h(\tau) d\tau \right) ds < \infty \right\}.$$

Then $L^1(0, 1) \subset A \cap B$ and classes A and B are equivalent when p = 2. It is also known [16] that $A \subsetneq B$ for $1 and <math>B \subsetneq A$ for p > 2.

 C^1 -regularity of solution space for (P_{λ}) is not obvious mainly due to the singular effect of *h*. But Proposition 2.1 in Section 2 guarantees to find C^1 solutions for the problem. Denote by \mathscr{S} the closure of the set of nontrivial solutions and we state one of our main theorems in this paper.

Theorem 1.1. Assume that $h \in A$. Also assume that (F1) and (F2). Then for each $k \in \mathbb{N}$, there exist two unbounded subcontinua \mathcal{C}_k^{\pm} in \mathscr{S} bifurcating from $(\mu_k, 0)$. Furthermore, $\mathcal{C}_k^{\pm} \cap (\mathbb{R} \times \{0\}) = \{(\mu_k, 0)\}$ and if $(\lambda, u) \in \mathcal{C}_k^+ \setminus \{(\mu_k, 0)\}(\mathcal{C}_k^- \setminus \{(\mu_k, 0)\})$, then u is a (k - 1)-nodal solution in (0, 1) satisfying u'(0) > 0(u'(0) < 0), respectively.

Based on this theorem and under assumptions $h \in A$, (F1),(F2) and (F3), we prove that for each $k \in \mathbb{N}$, (P_{λ}) has at least two (k-1)-nodal solutions (one in C_k^+ and the other in C_k^-) for $\lambda \in (\mu_k, \infty)$ and no (k-1)-nodal solutions for $\lambda \in (0, \frac{f_0}{f^*}\mu_k)$. See Theorem 5.1 in Section 5. Also investigating the figure of bifurcation branches C_k^{\pm} with additional conditions on f, we obtain several results about existence, uniqueness, nonexistence and multiplicity of positive solutions and sign-changing solutions. See Theorems and Corollary 5.2–5.6. Download English Version:

https://daneshyari.com/en/article/842948

Download Persian Version:

https://daneshyari.com/article/842948

Daneshyari.com