

Available online at www.sciencedirect.com

Nonlinear Analysis 69 (2008) 1494-1514

www.elsevier.com/locate/na

A multi-dimensional quenching problem due to a concentrated nonlinear source in \mathbb{R}^N

C.Y. Chan*, P. Tragoonsirisak

Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504-1010, USA

Received 9 May 2007; accepted 6 July 2007

Abstract

Let *B* be a *N*-dimensional ball $\{x \in \mathbb{R}^N : |x| < R\}$ centered at the origin with a radius *R*, \bar{B} be its closure, and ∂B be its boundary. Also, let $\nu(x)$ denote the unit inward normal at $x \in \partial B$, and $\chi_B(x)$ be the characteristic function, which is 1 for $x \in B$, and 0 for $x \in \mathbb{R}^N \setminus B$. This article studies the following multi-dimensional semilinear parabolic first initial-boundary value problem with a concentrated nonlinear source on ∂B :

$$u_t - \Delta u = \alpha \frac{\partial \chi_B(x)}{\partial v} f(u)$$
 in $\mathbb{R}^N \times (0, T]$,
 $u(x, 0) = 0$ for $x \in \mathbb{R}^N$, $u(x, t) \to 0$ as $|x| \to \infty$ for $0 < t \le T$,

where α and T are positive numbers, f is a given function such that $\lim_{u\to c^-} f(u) = \infty$ for some positive constant c, and f(u) and its derivatives f'(u) and f''(u) are positive for $0 \le u < c$. It is shown that the problem has a unique nonnegative continuous solution before quenching occurs, and if u quenches in a finite time, then it quenches everywhere on ∂B only. It is proved that u always quenches in a finite time for $N \le 2$. For $N \ge 3$, it is shown that there exists a unique number α^* such that u exists globally for $\alpha \le \alpha^*$ and quenches in a finite time for $\alpha > \alpha^*$. Thus, quenching does not occur in infinite time. A formula for computing α^* is given. A computational method for finding the quenching time is devised. © 2007 Elsevier Ltd. All rights reserved.

MSC: primary 35K60; 35K57; 35B35

Keywords: Multi-dimensional quenching; Concentrated nonlinear source; Unbounded domain; Existence; Uniqueness; Quenching; Computational method; Quenching time

1. Introduction

Let $H = \partial/\partial t - \Delta$, T be a positive real number, $x = (x_1, x_2, \dots, x_N)$ be a point in the N-dimensional Euclidian space \mathbb{R}^N , $\Omega = \mathbb{R}^N \times (0, T]$, B be a N-dimensional ball $\{x \in \mathbb{R}^N : |x - \bar{b}| < R\}$ centered at a given point \bar{b} with a radius R, ∂B be the boundary of B, $\nu(x)$ denote the unit inward normal at $x \in \partial B$, and

$$\chi_B(x) = \begin{cases} 1 & \text{for } x \in B, \\ 0 & \text{for } x \in \mathbb{R}^N \backslash B, \end{cases}$$

^{*} Corresponding author. Tel.: +1 337 482 5288; fax: +1 337 482 5346. E-mail addresses: chan@louisiana.edu (C.Y. Chan), pxt6365@louisiana.edu (P. Tragoonsirisak).

be the characteristic function. We would like to study the following multi-dimensional semilinear parabolic first initial-boundary value problem with a source on the surface of the ball:

$$Hu = \alpha \frac{\partial \chi_B(x)}{\partial \nu} f(u) \quad \text{in } \Omega,$$

$$u(x,0) = 0 \text{ for } x \in \mathbb{R}^N, \qquad u(x,t) \to 0 \quad \text{as } |x| \to \infty \text{ for } 0 < t \le T,$$

$$(1.1)$$

where α is a positive number. Without loss of generality, let \bar{b} be the origin. This model is motivated by a N-dimensional ball B having a radius R and situated in \mathbb{R}^N ; on the surface ∂B of the ball, there is a nonlinear heat source of strength $\alpha f(u)$, where u(x,t) in Ω is the unknown temperature to be determined. We assume that $\lim_{u\to c^-} f(u) = \infty$ for some positive constant c, and f(u) and its derivatives f'(u) and f''(u) are positive for $0 \le u < c$. A solution u is said to quench if there exists an extended real number $t_q \in (0, \infty]$ such that

$$\sup \left\{ u(x,t) : x \in \mathbb{R}^N \right\} \to c^- \quad \text{as } t \to t_q.$$

If $t_q < \infty$, then u is said to quench in a finite time. If $t_q = \infty$, then u quenches in infinite time. We note that whether quenching for the heat equation with a non-concentrated source in an unbounded domain occurs in a finite time was studied by Dai and Gu [1], and Dai and Zeng [2].

In Section 2, we show that the nonlinear integral equation corresponding to the problem (1.1) has a unique nonnegative continuous solution u, which is a strictly increasing function of t. We then prove that u is the unique solution of the problem (1.1). If t_q is finite, we show that u quenches everywhere on ∂B only. In Section 3, we prove that for $N \leq 2$, u always quenches in a finite time. This behavior is completely different from that for $N \geq 3$. In Section 4, we show that for $N \geq 3$, there exists a unique number α^* such that u exists globally for $\alpha \leq \alpha^*$ and quenches in a finite time for $\alpha > \alpha^*$. This rules out the possibility of quenching in infinite time. We also derive a formula for computing α^* . In Section 5, we give a computational method for determining the finite quenching time t_q .

2. Existence, uniqueness, and quenching

Green's function $g(x, t; \xi, \tau)$ (cf. Stakgold [3, p. 198]) corresponding to the problem (1.1) is determined by the following system:

$$Hg(x,t;\xi,\tau) = \delta(x-\xi)\delta(t-\tau) \quad \text{for } x,\xi \in \mathbb{R}^N \text{ and } t,\tau \in (-\infty,\infty),$$

$$g(x,t;\xi,\tau) = 0 \quad \text{for } x,\xi \in \mathbb{R}^N, \text{ and } t < \tau,$$

$$g(x,t;\xi,\tau) \to 0 \quad \text{as } |x| \to \infty \text{ for } \xi \in \mathbb{R}^N \text{ and } t,\tau \in (-\infty,\infty).$$

It is given by

$$g(x, t; \xi, \tau) = \begin{cases} \frac{1}{[4\pi(t - \tau)]^{N/2}} \exp\left(-\frac{|x - \xi|^2}{4(t - \tau)}\right), & t > \tau, \\ 0, & t < \tau. \end{cases}$$

To derive the integral equation from the problem (1.1), let us consider the adjoint operator $(-\partial/\partial t - \Delta)$ of H. Using Green's second identity, we obtain

$$u(x,t) = \alpha \int_0^t \int_{\mathbb{R}^N} g(x,t;\xi,\tau) \frac{\partial \chi_B(\xi)}{\partial \nu} f(u(\xi,\tau)) d\xi d\tau.$$

Let \tilde{R} denote a positive number larger than R. Then,

$$\int_{\mathbb{R}^N} g(x,t;\xi,\tau) \frac{\partial \chi_B(\xi)}{\partial \nu} f(u(\xi,\tau)) d\xi = \lim_{\tilde{R} \to \infty} \int_{|\xi| < \tilde{R}} g(x,t;\xi,\tau) f(u(\xi,\tau)) \left[\nu(\xi) \cdot \nabla \chi_B(\xi) \right] d\xi.$$

Since $\chi_B(\xi) = 0$ for $\xi \in \mathbb{R}^N \backslash B$, it follows from an integration by parts that

$$\lim_{\tilde{R}\to\infty}\int_{|\xi|<\tilde{R}}g(x,t;\xi,\tau)f(u(\xi,\tau))\left[\nu(\xi)\cdot\nabla\chi_B(\xi)\right]\mathrm{d}\xi$$

Download English Version:

https://daneshyari.com/en/article/842963

Download Persian Version:

https://daneshyari.com/article/842963

<u>Daneshyari.com</u>