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The convexity of the solution set of a pseudoconvex inequality
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Abstract

For a pseudoconvex function f on a nonempty convex set C in a real normed vector space X , we present several equivalent
conditions for the convexity of the set

Cx := {c ∈ C : f (x) ≤ f (c)} for x ∈ C.

These conditions turn out to be very useful in characterizing the solution set of a pseudoconvex minimization problem of f over
Cx and the pseudolinearity of a Gâteux differentiable function f . We hence extend several existing results about characterizations
of the solutions to a convex program and a pseudolinear program.
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1. Introduction

Let C be a nonempty convex set in a real normed vector space X whose dual space is X∗. We say that a function
f : X → (−∞, +∞) is pseudoconvex on C if it is Gâteaux differentiable at each x ∈ C and, for y ∈ C ,

〈∇ f (x), y − x〉 ≥ 0 ⇒ f (y) ≥ f (x),

where ∇ f (x) is the Gâteaux derivative of f at x which lies in X∗ and satisfies

〈∇ f (x), v〉 = lim
t→0+

f (x + tv) − f (x)

t
for all v ∈ X.

If − f is pseudoconvex on C , then f is said to be pseudoconcave on C . A function f is pseudolinear on C if it is
both pseudoconvex and pseudoconcave on C . The concept of pseudoconvexity was introduced by Mangasarian in [9]
to generalize that of the convexity of a differentiable function.

For (x, y) ∈ C × C , we denote

xty := x + t (y − x) for t ∈ [0, 1];
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[x, y] := {xty : t ∈ [0, 1]};

Cx := {c ∈ C : f (x) ≤ f (c)};

Dx := {c ∈ C : f (x) ≥ f (c)};

Ex := {c ∈ C : f (x) = f (c)}.

Clearly Ex is the solution set of the programming problem to minimize f over Cx and

f (x) = f (y) ⇔ Cx = Cy ⇔ Dx = Dy ⇔ Ex = Ey .

In addition, for a pseudoconvex function f on C ,

C = {c ∈ C : 〈∇ f (x), c − x〉 ≥ 0} ⇔ Cx = C.

When Cx = C , the solution set of the minimization problem of f over C is

Ex = {y ∈ C : 〈∇ f (y), c − y〉 ≥ 0 for all c ∈ C}.

It is interesting to characterize the solution set of a minimization problem so that we can know more about the
nature of its solutions. In Rn , when x is an optimal solution, the set Ex has been characterized in terms of the gradient
∇ f by Mangasarian in [10] for a twice continuously differentiable convex program and by Jeyakumar and Yang [6]
for a pseudolinear program. For the nondifferentiable convex case, the reader is referred to [2,5,10,12].

We note that the convexity of Cx plays an important role in characterizing the set Ex (no matter whether Cx = C
or not). Our main purpose in this paper is to present several equivalent conditions for the convexity of Cx in the
pseudoconvex case. With these conditions we also characterize Ex to unify the corresponding results in [10,6].
Furthermore we use them to derive several results about the pseudolinearity of a function in a normed vector space
under weaker conditions than in [3,7,8,11].

2. The convexity of Cx for a pseudoconvex function

It is easy to see that Cx may be nonconvex for each x ∈ C with Cx 6= C even for the convex case. For example,
when f (x) = x2 for x ∈ C = [−1, 2], Cx is not convex for each x ∈ [−1, 0) ∪ (0, 1]. However, for x ∈ (1, 2], Cx is
convex. We note that 〈∇ f (x), y − x〉 ≥ 0 for all x ∈ (1, 2] and for all y ∈ Cx . Indeed, this is one of the equivalent
conditions for Cx to be convex as we state in our first simple result below.

Proposition 2.1. Let f be pseudoconvex at x ∈ C. Then the following are equivalent:

(i) Cx is convex.
(ii) For each y ∈ Cx , [x, y] ⊆ Cx .

(iii) 〈∇ f (x), y − x〉 ≥ 0 for all y ∈ Cx .

Proof. It suffices to show (iii) ⇒ (i) since (i) ⇒ (ii) ⇒ (iii) is trivial.
Let (iii) be true. Then for any y1, y2 ∈ Cx ,

〈∇ f (x), y1 − x〉 ≥ 0 and 〈∇ f (x), y2 − x〉 ≥ 0,

so 〈∇ f (x), y1t y2 − x〉 ≥ 0 for all t ∈ [0, 1]. By the pseudoconvexity of f at x , y1t y2 ∈ Cx for all t ∈ [0, 1]. This
shows (i). �

In Proposition 2.1, we only assume that the function f is pseudoconvex at the point x . When the function is
pseudoconvex on the whole set Cx we have more equivalent statements for the convexity of Cx .

Theorem 2.2. Let C be a nonempty convex set in a normed vector space X and x ∈ C. If f is pseudoconvex on Cx ,
then (i)–(iii) in Proposition 2.1 and the following are equivalent:

(iv) For each y ∈ Cx there exist p(x, y) > 0 and q(x, y) > 0 such that p(x, y) ≤ 1 and

f (y) ≥ f (x) + p(x, y)〈∇ f (x), y − x〉 ≥ f (x) + q(x, y)〈∇ f (x), y − x〉
2.
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