

Available online at www.sciencedirect.com





Nonlinear Analysis 67 (2007) 3013-3036

www.elsevier.com/locate/na

## Existence and uniqueness results for the 2-D dissipative quasi-geostrophic equation

Jiahong Wu\*

Department of Mathematics, Oklahoma State University, 401 Mathematical Sciences, Stillwater, OK 74078, USA

Received 3 July 2006; accepted 25 September 2006

## Abstract

This paper concerns itself with Besov space solutions of the 2-D quasi-geostrophic (QG) equation with dissipation induced by a fractional Laplacian  $(-\Delta)^{\alpha}$ . The goal is threefold: first, to extend a previous result on solutions in the inhomogeneous Besov space  $B_{2,q}^r$  [J. Wu, Global solutions of the 2D dissipative quasi-geostrophic equation in Besov spaces, SIAM J. Math. Anal. 36 (2004–2005) 1014–1030] to cover the case when  $r = 2 - 2\alpha$ ; second, to establish the global existence of solutions in the homogeneous Besov space  $\mathring{B}_{p,q}^r$  with general indices p and q; and third, to determine the uniqueness of solutions in any one of the four spaces:  $B_{2,q}^s$ ,  $\mathring{B}_{p,q}^r$ ,  $L^q((0, T); \mathring{B}_{2,q}^{s+\frac{2\alpha}{q}})$  and  $L^q((0, T); \mathring{B}_{p,q}^{r+\frac{2\alpha}{q}})$ , where  $s \ge 2 - 2\alpha$  and  $r = 1 - 2\alpha + \frac{2}{p}$ . (© 2006 Elsevier Ltd. All rights reserved.

MSC: 35Q35; 76B03

Keywords: 2-D quasi-geostrophic equation; Besov space; Existence and uniqueness

## 1. Introduction

The 2-D dissipative quasi-geostrophic (QG) equation concerned here assumes the form

$$\partial_t \theta + u \cdot \nabla \theta + \kappa (-\Delta)^{\alpha} \theta = 0, \tag{1.1}$$

where  $\kappa > 0$  and  $\alpha \ge 0$  are parameters,  $\theta = \theta(x, t)$  is a scalar function of  $x \in \mathbb{R}^2$  and  $t \ge 0$ , and u is a 2-D velocity field determined by  $\theta$  through the relations

$$u = (u_1, u_2) = (-\partial_{x_2}\psi, \partial_{x_1}\psi) \quad \text{and} \quad (-\Delta)^{\frac{1}{2}}\psi = \theta.$$
(1.2)

The fractional Laplacian operator  $(-\Delta)^{\beta}$  for a real number  $\beta$  is defined through the Fourier transform, namely

$$\widehat{(-\Delta)^{\beta}f(\xi)} = (2\pi|\xi|)^{2\beta}\widehat{f}(\xi)$$

<sup>\*</sup> Tel.: +1 405 744 5788; fax: +1 405 744 8275.

E-mail address: jiahong@math.okstate.edu.

 $<sup>0362\</sup>text{-}546X/\$$  - see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2006.09.050

where the Fourier transform  $\widehat{f}$  is given by

$$\widehat{f}(\xi) = \int_{\mathbb{R}^2} f(x) e^{-2\pi i x \cdot \xi} dx.$$

For notational convenience, we write  $\Lambda$  for  $(-\Delta)^{\frac{1}{2}}$  and combine the relations in (1.2) into

$$u = \nabla^{\perp} \Lambda^{-1} \theta,$$

where  $\nabla^{\perp} = (-\partial_{x_2}, \partial_{x_1})$ . Physically, (1.1) models the temperature evolution on the 2-D boundary of a 3-D quasigeostrophic flow and is sometimes referred to as the surface QG equation [8,13].

Fundamental mathematical issues concerning the 2-D dissipative QG equation (1.1) include the global existence of classical solutions and the uniqueness of solutions in weaker senses. In the subcritical case  $\alpha > \frac{1}{2}$ , these issues have been more or less resolved [9,14]. When  $\alpha \le \frac{1}{2}$ , the issue on the global existence of classical solutions becomes extremely difficult. For the critical case  $\alpha = \frac{1}{2}$ , this issue was first dealt with by Constantin et al. [7] and later studied in [3,6,10,11,17] and other works. A recent work of Kiselev et al. [12] appears to have resolved this issue (in the periodic case) by removing the  $L^{\infty}$ -smallness condition of [7]. Another recent progress on the critical dissipative QG equation was given in the work by Caffarelli and Vasseur [1]. We also mention other interesting investigations on related issues (see cf. [2,15,16]). The supercritical case  $\alpha < \frac{1}{2}$  remains a big challenge. This paper is mainly devoted to understanding the behavior of solutions of (1.1) with  $\alpha < \frac{1}{2}$ . Although our attention is mainly focused on the case when  $\alpha < \frac{1}{2}$ , the results presented here also hold for  $\alpha \geq \frac{1}{2}$ . We attempt to accomplish three major goals that we now describe.

In [17], we established the global existence of solutions of (1.1) in the inhomogeneous Besov space  $B_{2,q}^r$  with  $1 \le q \le \infty$  and  $r > 2 - 2\alpha$  when the corresponding initial data  $\theta_0$  satisfies

$$\|\theta_0\|_{B^r_{2,q}} \le C\kappa$$

for some suitable constant *C*. Our first goal is to extend this result to cover the case when  $r = 2 - 2\alpha$ . For this purpose, we derive a new a priori bound on solutions of (1.1) in  $B_{2,q}^{2-2\alpha}$ . When combined with a procedure detailed in [17], this new bound yields the global existence of solutions in  $B_{2,q}^{2-2\alpha}$ . As a special consequence of this result, the 2-D critical QG equation ((1.1) with  $\alpha = \frac{1}{2}$ ) possesses a global  $H^1$ -solution if the initial datum is comparable to  $\kappa$ .

Our second goal is to explore solutions of (1.1) in the homogeneous Besov space  $\mathring{B}_{p,q}^r$  with general indices  $2 \le p < \infty$  and  $1 \le q \le \infty$ . This study was partially motivated by the lower bound

$$\int_{\mathbb{R}^d} |f|^{p-2} f \cdot (-\Delta)^{\alpha} f \, \mathrm{d}x \ge C 2^{2\alpha j} \|f\|_{L^p}^p$$
(1.3)

valid for any function f that decays sufficiently fast at infinity and satisfies

$$\operatorname{supp} \widehat{f} \subset \{ \xi \in \mathbb{R}^d : K_1 2^j \le |\xi| \le K_2 2^j \},\$$

where  $0 < K_1 \le K_2$  are constants and *j* is an integer. This inequality, recently established in [5,18], provides a lower bound for the integral generated by the dissipative term when we estimate solutions of (1.1) in  $\mathring{B}_{p,q}^r$ . Combining this lower bound with suitable upper bounds for the nonlinear term, we are able to derive a priori estimates for solutions of (1.1) in  $\mathring{B}_{p,q}^r$ . Applying the method of successive approximation, we then establish the existence and uniqueness of solutions emanating from initial data  $\theta_0$  satisfying

$$\|\theta_0\|_{\mathring{B}^r_{p,a}} \le C\kappa,$$

where  $2 \le p < \infty$ ,  $1 \le q \le \infty$  and  $r = 1 - 2\alpha + \frac{2}{p}$ . Setting q = p, we obtain as a special consequence the global solutions in the homogeneous Sobolev space  $\mathring{W}^{p,r}$ , where  $2 \le p < \infty$  and  $r = 1 - 2\alpha + \frac{2}{p}$ .

The third goal is to determine the uniqueness of solutions of (1.1) in the spaces

$$B_{2,q}^{s}, \qquad \mathring{B}_{p,q}^{r}, \qquad L^{q}\left((0,T); B_{2,q}^{s+\frac{2\alpha}{q}}\right) \quad \text{and} \quad L^{q}\left((0,T); \mathring{B}_{p,q}^{r+\frac{2\alpha}{q}}\right)$$
(1.4)

3014

Download English Version:

https://daneshyari.com/en/article/843023

Download Persian Version:

https://daneshyari.com/article/843023

Daneshyari.com