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a b s t r a c t

The paper discusses the global exponential stability in the Lagrange sense for a non-
autonomous Cohen–Grossberg neural network (CGNN) with time-varying and distributed
delays. The boundedness and global exponential attractivity of non-autonomous CGNN
with time-varying and distributed delays are investigated by constructing appropriate
Lyapunov-like functions. Moreover, we provide verifiable criteria on the basis of
considering three different types of activation function, which include both bounded and
unbounded activation functions. These results can be applied to analyzemonostable aswell
as multistable biology neural networks due to making no assumptions on the number of
equilibria. Meanwhile, the results obtained in this paper are more general and challenging
than that of the existing references. In the end, an illustrative example is given to verify our
results.
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1. Introduction

Cohen–Grossberg neural networks (CGNNs) have found many applications since the pioneering work of Cohen and
Grossberg [1]. In employing CGNNs to solve problems, one of the most desirable properties of CGNNs is the Lyapunov
stability. From a dynamical systempoint of view, globally stable networks in Lyapunov sense aremonostable systems,which
have a unique equilibrium attracting all trajectories asymptotically, more specific results are referred to [2–10,25–29]. In
many other applications, however, monostable neural networks have been found to be computationally restrictive and
multistable dynamics are essential to deal with the important neural computations desired. In these circumstances, neural
networks are no longer globally stable and more appropriate notions of stability are need to deal with multistable systems,
especially, such as the Cohen–Grossberg neural network.When applications are taken into account in biology, it is necessary
and important to deal with multistable properties. In [11], the boundedness, attractivity and complete convergence of a
multistable network are investigated. Furthermore, in [13] the author studied the global exponential stability (GES) in the
Lagrange sense for recurrent neural networks basing on [11,12]. It is noted that unlike Lyapunov stability, Lagrange stability
refers to the stability of the total system, not the stability of the equilibriumpoint. Hence, the Lagrange stability is considered
on the basis of the boundedness of solutions and the existence of global attractive sets. About Lagrange stability, for more
results in the theory and application of dynamical systems refer to [14–21]. At present, although a series of results for CGNNs

∗ Corresponding author.
E-mail address: shunxiang621@yahoo.com.cn (X. Wang).

0362-546X/$ – see front matter Crown Copyright© 2008 Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.na.2008.09.019

http://www.elsevier.com/locate/na
http://www.elsevier.com/locate/na
mailto:shunxiang621@yahoo.com.cn
http://dx.doi.org/10.1016/j.na.2008.09.019


X. Wang et al. / Nonlinear Analysis 70 (2009) 4294–4306 4295

are obtained, the stability analysis in the Lagrange sense does not appear. So from the theoretical and application view, it is
necessary to study the stable properties in the Lagrange sense for a Cohen–Grossberg neural network.
Motivated by the above discussion, our objective in this paper is to study the global exponential stability in Lagrange sense

for the non-autonomous CGNNwith time-varying and distributed delays.We provide verifiable criteria for the boundedness
of the networks and the existence of globally exponentially attractive (GEA) sets by constructing appropriate Lyapunov-like
functions. Meanwhile, we consider three different types of activation function, which include both bounded and unbounded
activation functions. Hence, it is believed that the results are significant and useful for the design and applications of the
non-autonomous CGNNs with mixed delays.
This paper consists of the following sections. Section 2 describes some preliminaries, including some necessary notations,

definitions, assumptions and lemmas. The main results basing on three different types of activation function are obtained
in Section 3. Section 4 gives a numerical example to demonstrate the main results. We conclude this paper in Section 5.

2. Preliminaries

Consider the following non-autonomous Cohen–Grossberg neural network (CGNN) with time-varying and distributed
delays:

ẋi(t) = −ai(t, xi(t))

[
di(t, xi(t))−

n∑
j=1

bij(t)fj(xj(t))−
n∑
j=1

cij(t)fj(xj(t − τj(t)))

−

n∑
j=1

eij(t)
∫ t

t−λ
fj(xj(s))ds− Ii(t)

]
, (1)

where i = 1, . . . , n, n is the number of neurons; xi(t) is the state variable of the ith neuron at time t; fj(·) denotes the
activation function; ai(·) denotes the amplification function and di(·) denotes the behaved function, where ai and di are
continuous functions on R2; bij(t), cij(t) and eij(t) are the weight strength of the jth unit on the ith unit at time t; Ii(t) is a
variable input (bias); also fj, bij, cij, eij and Ii are continuous functions on R; τj(t) corresponds to the transmission delay along
the axon of the jth unit; the scalar λ > 0 is the known distributed delay.
Let h = max(max1≤j≤n{τj}, λ) and C is the Banach space of continuous functions ϕ : [−h, 0] → Rn with the norm

‖ϕ‖ = sups∈[−h,0] |ϕ(s)|. For a given constant H > 0, CH is defined as the subset {ϕ ∈ C : ‖ϕ‖ ≤ H}. Let KL denotes the set
of all nonnegative continuous functions P : C → [0,+∞], mapping bounded sets in C into bounded sets in [0,+∞]. For
any initial function ϕ ∈ C , the solution of (1) that starts from the initial condition ϕ will be denoted by x(t;ϕ). If there is no
need to emphasize the initial condition, any solution of the network (1) will also simply be denoted by x(t).
In order to establish the conditions of main results for the neural networks (1), we have the following assumptions:
(H1) For i = 1, 2, . . . , n, there exist positive constants ai and ai such that 0 < ai ≤ ai(t, u) ≤ ai < +∞ for all t, u ∈ R;
(H2) For i = 1, 2, . . . , n, there exist positive constants di and di such that 0 ≤ udi(t, u); diu ≤ di(t, u) ≤ diu for all

t, u ∈ R;
For convenience, we introduce some notations. We use x = (x1, x2, . . . , xn)T ∈ Rn to denote a column vector, in which

the symbol (T) denotes the matrix transpose of a vector. En×n will be used to denote the n × n identity matrix. τj(t) is
nonnegative and bounded, i.e. 0 ≤ τj(t) ≤ τj, τ(t) = (τ1(t), τ2(t), . . . , τn(t))T and 0 ≤ τ̇ (t) ≤ δ < 1; Throughout the
paper, we assume that B̃, C̃ , and Ẽ to denote the connection weight matrices bij, c ij, eij, respectively, where

bij = max
t∈[0,∞]

bij(t); c ij = max
t∈[0,∞]

cij(t); eij = max
t∈[0,∞]

eij(t).

Also we assume that

I i = max
t∈[0,∞]

Ii(t); i = 1, 2, . . . , n.

In this paper, we shall consider three classes of activation functions for the neural network model (1). To this end, we
define the vector function f ∈ C(Rn, Rn) by f (x) = (f1(x1), f2(x2), . . . , fn(xn))T, where x = (x1, x2, . . . , xn)T ∈ Rn. For
convenience, we define

Π := {ψ ∈ C(R, R)|sψ(s) > 0, s 6= 0, and D+ψ(s) ≥ 0, s ∈ R}.

(H3) f (·) ∈ Θ , where

Θ := {f (·)|fi ∈ C(R, R), ∃ki > 0, |fi(xi)| ≤ ki,∀xi ∈ R, i = 1, 2, . . . , n}.

Obviously, (H3) consists of all bounded continuous functions, of course, it also consists of sigmoid functions. The constants
ki(i = 1, 2, . . . , n) of theΘ-type activation functionswill be called saturation constants. Note that for this class of activation
functions, it is not required that they be monotone and f (0) = 0.
(H3′) f (·) ∈ Υ , where

Υ := {f (·)|fi ∈ Π, ∃ki > 0, xifi(xi) ≤ kix2i ,∀xi ∈ R, i = 1, 2, . . . , n}.
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