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a b s t r a c t

Let H be a Hilbert space and f a fixed contractive mapping with coefficient 0 < α < 1, A
a strongly positive linear bounded operator with coefficient γ̄ > 0. Consider two iterative
methods that generate the sequences {xn}, {yn} by the algorithm, respectively.

xn = (I − αnA)
1
tn

∫ tn

0
T(s)xnds+ αnγf (xn) (I)

yn+1 = (I − αnA)
1
tn

∫ tn

0
T(s)ynds+ αnγf (yn) (II)

where {αn} and {tn} are two sequences satisfying certain conditions, and = = {T(s) : s ≥ 0}
is a one-parameter nonexpansive semigroup on H. It is proved that the sequences {xn}, {yn}
generated by the iterative method (I) and (II), respectively, converge strongly to a common
fixed point x∗ ∈ F(=) which solves the variational inequality

〈(A− γf)x∗, x∗ − z〉 ≤ 0 z ∈ F(=).

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Let H be a real Hilbert space, let A be a bounded linear operator on H. Throughout this paper, we always assume that A is
strongly positive; that is, there is a constant γ̄ > 0 such that

〈Ax, x〉 ≥ γ̄‖x‖2
∀x ∈ H.

Recall that a mapping T of H into itself is called nonexpansive if
‖Tx− Ty‖ ≤ ‖x− y‖

for all x, y ∈ H. Recall also that a contraction on H is a self-mapping f on H such that
‖f (x)− f (y)‖ ≤ α‖x− y‖ x, y ∈ H.

Where α ∈ [0, 1) is a constant.
Iterative methods for nonexpansive mappings have recently been applied to solve convex minimization problems; see,

e.g., [1–6] and the references therein. A typical problem is to minimize a quadratic function over the set of the fixed points
of a nonexpansive mapping on a real Hilbert space H:

min
x∈F

1
2
〈Ax, x〉 − 〈x, b〉, (1.1)

where F is the fixed point set of a nonexpansive mapping T on H and b is a given point in H.
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Starting with an arbitrary initial x0 ∈ H, define a sequence {xn} recursively by

xn+1 = (I − αnA)Txn + αnb n ≥ 0. (1.2)

It is proved [3] (see also [4]) that the sequence {xn} generated by (1.2) converges strongly to the unique solution of the
minimization problem (1.1) provided the sequence {αn} satisfies certain conditions.

On the other hand, Moudafi [7] introduced the viscosity approximation method for nonexpansive mappings (see [8] for
further developments in both Hilbert and Banach spaces). Let f be a contraction on H. Starting with an arbitrary initial x0 ∈ H,
define a sequence {xn} recursively by

xn+1 = (1− σn)Txn + σnf (xn) n ≥ 0, (1.3)

where {σn} is a sequence in (0,1). It is proved [7,8] that under certain appropriate conditions imposed on {σn}, the sequence
{xn} generated by (1.3) strongly converges to the unique solution x∗ in C of the variational inequality

〈(I − f )x∗, x− x∗〉 ≥ 0 x ∈ C.

Recently, Giuseppe Marino and Hong Kun Xu [9] combined the iterative method (1.2) with the viscosity approximation
method (1.3) and considered the following general iteration process:

xn+1 = (I − αnA)Txn + αnγf (xn) n ≥ 0 (1.4)

and proved that if the sequence {αn} satisfies appropriate conditions, the sequence {xn} generated by (1.4) converges strongly
to the unique solution of the variational inequality

〈(A− γf )x∗, x− x∗〉 ≥ 0 x ∈ C

which is the optimality condition for the minimization problem

min
x∈C

1
2
〈Ax, x〉 − h(x),

where h is a potential function for γf (i.e., h′(x) = γf (x) for x ∈ H).
In this paper, motivated and inspired by Giuseppe Marino and Hong Kun Xu [9], we will introduced the following iterative

procedures (see (1.5) and (1.6)) for the approximation of common fixed points of a one-parameter nonexpansive semigroup
{T(s)|0 ≤ s <∞} on a nonempty closed convex subset C in a Hilbert space:

xn = (I − αnA)
1
tn

∫ tn

0
T(s)xnds+ αnγf (xn) (1.5)

yn+1 = (I − αnA)
1
tn

∫ tn

0
T(s)ynds+ αnγf (yn), (1.6)

where {αn} and {tn} are sequences in [0, 1] and (0,∞), respectively. And their convergence theorems can be proved under
some appropriate control conditions on parameter {αn}, {tn}. Furthermore, by using these results, we obtain two mean
ergodic theorems for nonexpansive mappings in Hilbert space. The results presented in this paper extend and improve the
main results in Giuseppe Marino and Hong Kun Xu [9], and the methods of the proof given in this paper are also different.

Let C be a closed convex subset of a Hilbert space H. Then a family = = {T(s)|0 ≤ s < ∞} of mappings of C into itself is
called a one-parameter nonexpansive semigroup on C if it satisfies the following conditions:

(a) T(s+ t) = T(s)T(t) for all s, t ≥ 0 and T(0) = I;
(b) ‖T(s)x− T(s)y‖ ≤ ‖x− y‖ for all x, y ∈ C and s ≥ 0.
(c) the mapping T(·)x is continuous, for each x ∈ C.

We denote by F(=) the set of common fixed points of {T(t) : t ≥ 0}. That is, F(=) = ∩0≤s<∞ F(T(s)).

2. Preliminaries

This section collects some lemmas which will be used in the proofs for the main results in the next section.

Lemma 2.1 (Giuseppe Marino and Hong Kun Xu [9]). Assume A is a strongly positive linear bounded operator on a Hilbert space
H with coefficient γ̄ > 0 and 0 < ρ ≤ ‖A‖−1. Then ‖I − ρA‖ ≤ 1− γ̄.

Lemma 2.2 (Shimizu and Takashi [10]). Let C be a nonempty bounded closed convex subset of H and let = = {T(s) : 0 ≤ s <∞}
be a nonexpansive semigroup on C, then for any h ≥ 0,

lim
t→∞

sup
x∈C

∥∥∥∥1
t

∫ t

0
T(s)xds− T(h)

(1
t

∫ t

0
T(s)xds

)∥∥∥∥ = 0.
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