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a b s t r a c t

We consider the linear Volterra equation

x(t) = a(t)−
∫ t

0
K(t, s) x(s) ds

and suppose that the kernel K and forcing function a depend on some parameters ε ∈ Rd.
We prove that, under suitable conditions, the solutions depend on ε as smoothly the func-
tions a and K . The proof is based on the contraction mapping principle and the variational
equation. Though our conditions are not the most generally possible, they nonetheless in-
clude many important examples.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

We consider linear Volterra equations of the form

x(t) = a(t)−
∫ t

0
K(t, s)x(s) ds.

There are three basic questions to be addressed when confronted with such an equation: does a solution exist, is that
solution unique, and is the solution stable?
There are several approaches to proving the existence of solutions to differential and integral equations. Most fall into

the categories of contraction mapping arguments, compactness arguments, or index theory arguments.
Of these the contractionmapping approach is probably themost elementary and has several advantages; the contraction

mapping principle automatically gives uniqueness of the solution in some class and typically gives continuous dependence
of the solution on the defining data.
There are many different forms of stability that have been defined for differential equations. Perhaps the weakest is the

continuous dependence of the solution on the functions a and K that define the equation. This has been widely studied, see
for example [1] or [2]. The work of Artstein gives a fairly complete picture of the problem of continuous dependence of solu-
tions to Volterra integral equations [3,4]. Continuous dependence can be thought of as weak stability undermisspecification
of the model.
However, in many problems arising out of physics the model is certain and any uncertainty in the model specification

comes from uncertainty in the measurement of various physical parameters describing the model. Often this reduces our
uncertainty to some finite dimensional vector space of parameters. In this case it is the natural to consider differentiable
dependence of the solution on this finite dimensional space of parameters.
Weprove suchdifferential dependence onparameters in Theorem8. A version of our theoremcanbe found in [5, Theorem

1.2 Chapter 13]. It comes as a corollary of a stronger theorem proved using compactness arguments.
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2. Existence and uniqueness of solutions

We begin here by giving a version of the existence and uniqueness of solutions to the linear Volterra integral equation

x(t) = a(t)−
∫ t

0
K(t, s)x(s) ds. (1)

As with differential equations, an existence and uniqueness theorem can be obtained using the contraction mapping
principle.

Theorem 1 (Contraction Mapping Principle). Let (X, d) be a complete metric space and P : X → X be a contraction mapping,
i.e. there exists 0 ≤ λ < 1 such that

d(P(x), P(y)) ≤ λd(x, y).

Then P has a unique fixed point, which we denote by ω(P). Moreover, for any x ∈ X we have

d(x, ω(P)) <
d(x, P(x))
1− λ

.

First we wish to prove an existence and uniqueness theorem for finite time horizons. We denote the space of continuous
functions with values in the normed space (V , ‖ · ‖) on a compact metric space X by C(X, V ). We endow this space with the
norm ‖φ‖0 = supx∈X ‖φ(x)‖ and write d0 for the associated metric. We will use V = Rn endowed with the usual Euclidean
norm and V = Mn(R), the space of n × n matrices with entries in R, endowed with the standard operator norm. For an
interval I ⊆ R denote4(I) := {(t, s) : s, t ∈ I, s ≤ t}.

Theorem 2 (Existence and Uniqueness for a Finite Time Horizon). Fix T > 0. Suppose a ∈ C([0, T ],Rn) and K : 4([0, T ]) →
Mn(R) such that for every φ ∈ C([0, T ],Rn)∫ t

0
K(t, s)φ(s) ds (2)

is a continuous function of t and there exists λ < 1 such that

sup
t∈[0,T ]

∫ t

0
‖K(t, s)‖ ds < λ. (3)

Then there exists a unique bounded solution x to (1) and x ∈ C([0, T ],Rn).

Remark 1. If we have K ∈ C(4([0, T ]),Mn(R)) then our condition (2) holds. However our kernel

K(t, s) =


1

1+ (t − s)
t − 1 ≤ s ≤ t

0 s < t − 1

satisfies (2) even though it is not continuous.

Proof. Define the map P : C([0, T ],Rn)→ C([0, T ],Rn) by

P(φ)(t) := a(t)−
∫ t

0
K(t, s)φ(s) ds. (4)

We have

d0(P(φ1), P(φ2)) ≤ sup
t∈[0,T ]

∥∥∥∥∫ t

0
K(t, s)(φ1(s)− φ2(s)) ds

∥∥∥∥
≤ sup
t∈[0,T ]

∫ t

0
‖K(t, s)‖ ‖φ1(s)− φ2(s)‖ ds

≤ sup
t∈[0,T ]

∫ t

0
‖K(t, s)‖ ds sup

t∈[0,T ]
‖φ1(t)− φ2(t)‖

< λ d0(φ1, φ2)

where λ is from (3). Thus P is a contraction mapping on C([0, T ],Rn). Thus we get a unique fixed point x(t) in C([0, T ],Rn).
If we apply our estimate from the contraction mapping principle to the function 0 we get

‖x‖0 = d0(0, x) ≤
d0(0, P(0))
1− λ

=
‖a‖0
1− λ

.
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