Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Sub-shadowings

Dawoud Ahmadi Dastjerdi*, Maryam Hosseini

Department of Mathematics, The University of Guilan, Rasht, Iran

ARTICLE INFO

Article history: Received 23 April 2009 Accepted 12 January 2010

MSC: primary 54H20 37B40 37D45 secondary 28D20

Keywords: Ergodic pseudo-orbit Shadowing <u>d</u>-shadowing Chain transitive Chain mixing

1. Introduction

ABSTRACT

An extended concept of δ pseudo-orbit called δ -ergodic pseudo-orbit is considered. If any δ -ergodic pseudo-orbit of a system is shadowed by a point along a set of positive lower density then we show that this system is chain mixing and if it is minimal then it is topologically weakly mixing and so has Li–Yorke Chaos. A SFT has this property if and only if it is mixing.

© 2010 Elsevier Ltd. All rights reserved.

Nonlinear

Suppose that *X* is a compact metric space and $f : X \to X$ a continuous and surjective map. A δ -chain from *x* to *y* of length *n* is a finite sequence $x_0 = x, x_1, \ldots, x_n = y$ such that $d(f(x_i), x_{i+1}) \leq \delta$ for $i = 0, \ldots, n - 1$. A δ -chain approximates an orbit and this approximation is usually for a short term. However, there are systems where this makes for long terms. Wherever this happens, one says that the δ -chain is shadowed by a point. The most eminent result in this regard is the so-called *Shadowing Lemma* due to [1].

A sequence $\xi = \{x_i\}_{i=0}^{\infty}$ of points is called δ pseudo-orbit if for any $i \ge 0$, $d(f(x_i), x_{i+1}) \le \delta$. It is called δ -ergodic pseudo-orbit [2] if

$$\limsup \frac{|B_n^c(\xi,\delta)|}{n} = 0$$

where $B_n^c(\xi, \delta) = \{i \in \{0, 1, ..., n\} : d(f(x_i), x_{i+1}) \ge \delta\}$. So a δ -ergodic pseudo-orbit may be presented as

 $x_0, x_1, \ldots, x_{m_1}; x_{m_1+1}, \ldots, x_{m_2}; x_{m_2+1}, \ldots$

where $x_{m_i+1}, \ldots, x_{m_{i+1}}$ is a δ -chain of length $m_{i+1} - (m_i + 1) \ge 0$ and $M = \{m_i\}_{i\in\mathbb{N}}$ has density zero, $d(M) = \lim_{n\to\infty} (|M \cap \{0,\ldots,n\}|/n) = 0$. We say that a δ pseudo-orbit (resp. δ -ergodic pseudo-orbit) is ϵ -shadowed (resp. ϵ -ergodic-shadowed [2]) by a true orbit if there exists $z \in X$ such that for any $i \ge 0$ (resp. for any $i \in \Lambda$ with $d(\Lambda) = 1$), $d(f^i(z), x_i) \le \epsilon$. The map f is said to have shadowing (resp. ergodic-shadowing [2]) property or briefly POTP if for any ϵ there exists δ such that any δ pseudo-orbit (resp. δ -ergodic pseudo-orbit) is ϵ -shadowed (resp. ϵ -ergodic-shadowed) by a true orbit.

* Corresponding author. Tel.: +98 131 3243509; fax: +98 131 3220066.

E-mail addresses: ahmadi@guilan.ac.ir (D.A. Dastjerdi), maryamh2002@yahoo.com (M. Hosseini).

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter 0 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2010.01.014

In *sub-shadowings* one considers a δ -ergodic pseudo-orbit and a shadowing along a large set of x_i 's. We will see in the next section that if this large set has a subset of positive density, or equivalently, it has positive lower density then the system has some nice dynamical properties. For instance, it is *chain transitive* and in particular, it is *chain mixing*. A map f is called chain transitive if for any $\delta > 0$ and any two points x and y there exists a δ -chain from x to y. It is said to be *chain recurrent* if for any $\delta > 0$ and any x in X there is a δ -chain from x to itself. If for any $k \ge 1$, f^k is chain transitive then f is said to be *totally chain transitive*. A dynamical system (X, f) has chain mixing property if for any $\epsilon > 0$ there exists N > 0 such that for any x, y in X and any n > N we have ϵ -chain of length n from x to y.

We recall some concepts. There are various kinds of *density* for natural sequences [3]. We already have defined the *density* of a sequence *B* as

$$d(B) = \lim_{n \to \infty} \frac{|B \cap \{1, \dots, n\}|}{n}$$

where |*A*| denotes the cardinal number of *A*. *Lower density* and *upper density* are defined similarly with lim inf and lim sup, respectively. The *upper Banach density* of *B* is

$$d^*(B) = \limsup_{m-n\to\infty} \frac{|B \cap \{m,\ldots,n\}|}{m-n+1}.$$

A set $B \subseteq \mathbb{N}$ is syndetic if it has bounded gaps or equivalently a finite union of the shifts of *B* is equal to \mathbb{N} [4,5]. That is for a natural number r, $\bigcup_{i=1}^{r} B - i = \mathbb{N}$. A sequence *B* is called *thick* set if it contains intervals of natural numbers of arbitrarily length [4,5]. That is

$$\forall n \in \mathbb{N}, \quad \exists x \in \mathbb{N}, \text{ s.t. } \{x, x+1, \dots, x+n\} \subset B.$$

It can be easily checked that *B* has full upper Banach density, $d^*(B) = 1$, if and only if it is thick. Also, any syndetic set has positive lower density.

The main concept that we introduce in this paper is \underline{d} -shadowing property which is the subject of Section 2. A system has this property if any δ -ergodic pseudo-orbit is traced along a set of positive lower density. We will investigate what properties a system with \underline{d} -shadowing property holds. Amongst these properties are totally chain transitivity (Theorem 2.5) and chain mixing (Corollary 2.6). Also we show that a minimal system with \underline{d} -shadowing property is weakly mixing (Theorem 2.8). In Section 3, we see that any system (Y, g) with a unique maximal attractor, X, so that $g|_X$ is exact, has \underline{d} -shadowing property (see Remark 3.2). In Section 4, we examine \underline{d} -shadowing property in subshifts. In particular, we show that any subshift of finite type is mixing iff it has d-shadowing property (Theorem 4.3).

Lemma 1.1. A set *B* of natural numbers has positive lower density if and only if $B \cap A \neq \emptyset$ for any sequence *A* with $\bar{d}(A) = 1$. In particular, $\bar{d}(A \cap B) > 0$.

Proof. The first part is immediate by using the identity $\underline{d}(A) = 1 - \overline{d}(A^c)$, see also [6]. The second part follows from the fact that $1 = \overline{d}(A) \le \overline{d}(A \cap B) + \overline{d}(A \setminus B)$ and the first part. \Box

2. <u>d</u>-shadowing

In this section we introduce new concepts of shadowing and then we will investigate some basic dynamical properties of a system with these properties. First a lemma. Let

 $B_n(z,\xi,\epsilon) := \{i \in \{0,\ldots,n\} : d(f^i(z),x_i) \le \epsilon\}, \qquad B(\epsilon,\xi,z) := \bigcup_{n \ge 0} B_n(z,\xi,\epsilon).$

Definition 2.1. Suppose that (X, f) is a topological dynamical system. If for any $\epsilon > 0$ there exists $\delta > 0$ such that any δ -ergodic pseudo-orbit ξ is ϵ -shadowed by a true orbit $\{f^i(z)\}_{i \in \mathbb{N}}$ in such a way that either

(1) $\underline{d}(B(\epsilon, \xi, z)) > 0$, or (2) $\overline{d}(B(\epsilon, \xi, z)) > 1/2$

then we say that f has d-shadowing property in case (1) and \overline{d} -shadowing in case (2).

Theorem 2.2. Let $f : X \to X$ be a continuous map. If f has \underline{d} -shadowing property or \overline{d} -shadowing property then f is chain transitive.

Proof. Let $\epsilon > 0$ and choose x, y in X. First suppose that f satisfies (1). Choose $M = \{m_i\}_{i=1}^{\infty}$ an increasing subsequence of natural numbers such that d(M) = 0 and so that if $M_1 = \{1, 2, ..., m_1\} \cup \{m_2 + 1, m_2 + 2, ..., m_3\} \cup \cdots \cup \{m_{2i} + 1, m_{2i} + 1,$

Download English Version:

https://daneshyari.com/en/article/843134

Download Persian Version:

https://daneshyari.com/article/843134

Daneshyari.com