Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Asymptotic behavior of a class of non-autonomous degenerate parabolic equations

Bixiang Wang, Robert Jones*

Department of Mathematics, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA

ARTICLE INFO

Article history: Received 15 August 2009 Accepted 20 January 2010

MSC: primary 35B40 secondary 35B41 371.30

Keywords: Pullback attractor Asymptotic compactness Degenerate parabolic equation

1. Introduction

ABSTRACT

We investigate the asymptotic behavior of solutions of a class of non-autonomous degenerate parabolic equations on \mathbb{R}^n with unbounded external forcing terms. The existence of a pullback global attractor is proved in $L^2(\mathbb{R}^n) \bigcap L^p(\mathbb{R}^n) \bigcap W^{1,r}(\mathbb{R}^n)$ for any $p \ge r \ge 2$. © 2010 Elsevier Ltd. All rights reserved.

This paper is concerned with the long-time behavior of the following non-autonomous degenerate parabolic equations defined on the entire space \mathbb{R}^n :

$$u_t - \operatorname{div}\left(|\nabla u|^{r-2} \nabla u\right) + \lambda u + f(x, u) = g(x, t), \quad x \in \mathbb{R}^n, \ t > \tau \text{ and } \tau \in \mathbb{R},$$
(1.1)

where $\lambda > 0$ and $r \ge 2$ are constants, g is an external forcing term given in $L^2_{loc}(\mathbb{R}, L^2(\mathbb{R}^n))$, and f is a nonlinear function satisfying some dissipative conditions.

In the autonomous case, global attractors of Eq. (1.1) have been studied by several authors in [1–7] and the references therein. For the non-autonomous equation, the existence of uniform attractors of (1.1) has been proved in [8] under the conditions that the domain is *bounded* and the external term *g* is *uniformly bounded* in L^s with $s \ge 2$. In the present paper, we will prove the existence of pullback attractors for the non-autonomous equation (1.1) defined on the *unbounded* domain \mathbb{R}^n with *unbounded g* in L^2 . For other types of non-autonomous equation, the attractors have been investigated by many people in [9–30]. In particular, when PDEs are defined on unbounded domains, such attractors have been examined in [9,25,26] for almost periodic external terms and in [12,13,29,31,30] for unbounded external terms. The purpose of this paper is to study the non-autonomous attractors for the degenerate parabolic equation (1.1) with unbounded external terms defined on \mathbb{R}^n .

The main difficulty for proving existence of attractors for PDEs defined on \mathbb{R}^n is of course the non-compactness of Sobolev embeddings caused by the unboundedness of the domain. One way to overcome this difficulty is the energy equation approach introduced by Ball in [32,33] and used in [12,13,34–36,25,37–40]. In the present paper, we will resolve this difficulty by using the tail-estimates method introduced in [41]. More precisely, we will show that the solutions of the

* Corresponding author. E-mail addresses: bwang@nmt.edu (B. Wang), rjones00@nmt.edu (R. Jones).

 $^{0362\}text{-}546X/\$$ – see front matter S 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2010.01.026

non-autonomous equation (1.1) are uniformly small in a sense for large space and time variables. This fact enables us to prove the pullback asymptotic compactness of solutions in $L^2(\mathbb{R}^n)$ and hence the existence of pullback attractors in the same space. Next, we show that the attractor in $L^2(\mathbb{R}^n)$ is actually a pullback attractor in $L^p(\mathbb{R}^n)$ for any $p \ge r$. To this end, we will first prove a necessary and sufficient condition for convergence of a sequence in $L^p(\mathbb{R}^n)$, which is motivated by the work of [42]. By applying the convergence criteria and uniform estimates in $L^p(\mathbb{R}^n)$, we will then be able to prove the existence of a pullback attractor for (1.1) in $L^p(\mathbb{R}^n)$ which actually coincides with the attractor in $L^2(\mathbb{R}^n)$. Finally, we show that the pullback attractor in $L^2(\mathbb{R}^n) \cap L^p(\mathbb{R}^n)$ is also a pullback attractor for Eq. (1.1) in $W^{1,r}(\mathbb{R}^n)$.

The outline of this paper is as follows. The next section gives a brief review of pullback attractor theory for nonautonomous systems. In Section 3, we provide a necessary and sufficient condition for convergence of a sequence in L^p . Section 4 is concerned with the existence of a cocycle for the non-autonomous equation (1.1) on \mathbb{R}^n . In Section 5 we derive uniform estimates of solutions for large space and time variables. In the last section, we prove the existence of a pullback global attractor in $L^2(\mathbb{R}^n) \cap L^p(\mathbb{R}^n) \cap W^{1,r}(\mathbb{R}^n)$.

The following notations will be used throughout the paper. We denote by $\|\cdot\|$ and (\cdot, \cdot) the norm and inner product in $L^2(\mathbb{R}^n)$ and use $\|\cdot\|_p$ to denote the norm in $L^p(\mathbb{R}^n)$. Otherwise, the norm of a general Banach space X is written as $\|\cdot\|_X$. The letters C and C_i (i = 1, 2, ...) are generic positive constants which may change their values from line to line or even in the same line.

2. Preliminaries

This section is devoted to a brief review of the pullback attractor theory for non-autonomous dynamical systems. The reader is referred to [12,13,17,43,44] for more details. In the following, Ω is a nonempty set, X is a metric space with distance $d(\cdot, \cdot)$, and \mathcal{D} is a collection of families of subsets of X:

$$\mathcal{D} = \{ D = \{ D(\omega) \}_{\omega \in \Omega} : D(\omega) \subseteq X \text{ for every } \omega \in \Omega \}.$$

Definition 2.1. A family of mappings $\{\theta_t\}_{t \in \mathbb{R}}$ from Ω to itself is called a family of shift operators on Ω if $\{\theta_t\}_{t \in \mathbb{R}}$ satisfies the group properties:

(i) $\theta_0 \omega = \omega, \forall \omega \in \Omega;$ (ii) $\theta_t(\theta_\tau \omega) = \theta_{t+\tau} \omega, \forall \omega \in \Omega \text{ and } t, \tau \in \mathbb{R}.$

Definition 2.2. Let $\{\theta_t\}_{t \in \mathbb{R}}$ be a family of shift operators on Ω . Then a continuous θ -cocycle ϕ on X is a mapping

 $\phi: \mathbb{R}^+ \times \Omega \times X \to X, \qquad (t, \omega, x) \mapsto \phi(t, \omega, x),$

which satisfies, for all $\omega \in \Omega$ and $t, \tau \in \mathbb{R}^+$,

(i) $\phi(0, \omega, \cdot)$ is the identity on *X*;

(ii) $\phi(t + \tau, \omega, \cdot) = \phi(t, \theta_{\tau}\omega, \cdot) \circ \phi(\tau, \omega, \cdot);$

(iii) $\phi(t, \omega, \cdot) : X \to X$ is continuous.

Definition 2.3. Let \mathcal{D} be a collection of families of subsets of *X*. Then \mathcal{D} is called inclusion-closed if $D = \{D(\omega)\}_{\omega \in \Omega} \in \mathcal{D}$ and $\tilde{D} = \{\tilde{D}(\omega) \subseteq X : \omega \in \Omega\}$ with $\tilde{D}(\omega) \subseteq D(\omega)$ for all $\omega \in \Omega$ imply that $\tilde{D} \in \mathcal{D}$.

Definition 2.4. Let \mathcal{D} be a collection of families of subsets of X and $\{K(\omega)\}_{\omega \in \Omega} \in \mathcal{D}$. Then $\{K(\omega)\}_{\omega \in \Omega}$ is called a pullback absorbing set for ϕ in \mathcal{D} if, for every $B \in \mathcal{D}$ and $\omega \in \Omega$, there exists $T(\omega, B) > 0$ such that

 $\phi(t, \theta_{-t}\omega, B(\theta_{-t}\omega)) \subseteq K(\omega) \text{ for all } t \ge T(\omega, B).$

Definition 2.5. Let \mathcal{D} be a collection of families of subsets of *X*. Then ϕ is said to be \mathcal{D} -pullback asymptotically compact in *X* if, for every $\omega \in \Omega$, $\{\phi(t_n, \theta_{-t_n}\omega, x_n)\}_{n=1}^{\infty}$ has a convergent subsequence in *X* whenever $t_n \to \infty$, and $x_n \in B(\theta_{-t_n}\omega)$ with $\{B(\omega)\}_{\omega \in \Omega} \in \mathcal{D}$.

Definition 2.6. Let \mathcal{D} be a collection of families of subsets of X and $\{\mathcal{A}(\omega)\}_{\omega\in\Omega} \in \mathcal{D}$. Then $\{\mathcal{A}(\omega)\}_{\omega\in\Omega}$ is called a \mathcal{D} -pullback global attractor for ϕ if the following conditions are satisfied, for every $\omega \in \Omega$:

- (i) $\mathcal{A}(\omega)$ is compact in *X*;
- (ii) $\{\mathcal{A}(\omega)\}_{\omega\in\Omega}$ is invariant; that is,

 $\phi(t, \omega, \mathcal{A}(\omega)) = \mathcal{A}(\theta_t \omega), \quad \forall t \ge 0;$

(iii) $\{\mathcal{A}(\omega)\}_{\omega\in\Omega}$ attracts every set in \mathcal{D} ; that is, for every $B = \{B(\omega)\}_{\omega\in\Omega} \in \mathcal{D}$,

 $\lim_{t\to\infty} d(\phi(t,\theta_{-t}\omega,B(\theta_{-t}\omega)),\mathcal{A}(\omega)) = 0,$

where *d* is the Hausdorff semi-metric.

Download English Version:

https://daneshyari.com/en/article/843145

Download Persian Version:

https://daneshyari.com/article/843145

Daneshyari.com