

Nonlinear Analysis 69 (2008) 3549-3558

The state constrained bilateral minimal time function

C. Nour^{a,*}, R.J. Stern^b

^a Computer Science and Mathematics Division, Lebanese American University, Byblos Campus, P.O. Box 36, Byblos, Lebanon ^b Department of Mathematics and Statistics, Concordia University, 1400 De Maisonneuve Blvd. West, Montreal, Quebec H3G 1M8, Canada

Received 30 March 2007; accepted 28 September 2007

Abstract

We generalize, to the bilateral case (that is, with variable initial and end points), the main results of Nour and Stern [C. Nour, R.J. Stern, Regularity of the state constrained minimal time function, Nonlinear Anal. 66 (1) (2007) 62–72] and Stern [R.J. Stern, Characterization of the state constrained minimal time function, SIAM J. Control Optim. 43 (2004) 697–707], where the regularity and Hamilton–Jacobi characterization of the state constrained (unilateral) minimal time function were studied.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Unilateral minimal time function; Bilateral minimal time function; State constrained; Small time controllability; Hamilton–Jacobi equations; Proximal analysis; Nonsmooth analysis

1. Introduction

We consider a state constrained control system governed by a differential inclusion. We are given a multifunction F mapping \mathbb{R}^n to subsets of \mathbb{R}^n , and a closed set $S \subset \mathbb{R}^n$. Associated with F is the following S-state constrained differential inclusion:

$$\begin{cases} \dot{x}(t) \in F(x(t)) & \text{a.e. } t \in [0, T], \\ x(t) \in S \quad \forall t \in [0, T]. \end{cases}$$
 (1)

A solution $x(\cdot)$ of (1) is taken to mean an absolutely continuous function $x:[0,T] \longrightarrow \mathbb{R}^n$ which, together with \dot{x} , its derivative with respect to t, satisfies the two inclusions of (1). We refer to such an x as an S-trajectory (of F).

The *S-constrained bilateral minimal time function* $T_S: S\times S \longrightarrow [0,+\infty]$ is defined as follows: For $(\alpha,\beta)\in S\times S$, $T_S(\alpha,\beta)$ is the minimum time taken by an *S*-trajectory to go from α to β . (When no such *S*-trajectory exists, $T_S(\alpha,\beta)$ is taken to be $+\infty$.) In the unconstrained case (when $S=\mathbb{R}^n$), the function $T_S(\cdot,\cdot)$ coincides with the bilateral minimal time function (denoted by $T(\cdot,\cdot)$) defined in [8], where Clarke and Nour studied the Hamilton–Jacobi equation of minimal time control in a domain which contains the target set, and utilized the function $T(\cdot,\cdot)$ for the construction of solutions [8, Section 5], and for the study of the existence of time-semigeodesic trajectories [8, Section 6]; see also Nour [16]. The function $T(\cdot,\cdot)$ was studied in depth in Nour [15], where the regularity conditions and a characterization of $T(\cdot,\cdot)$ as the unique proximal solution of partial Hamilton–Jacobi

E-mail addresses: cnour@lau.edu.lb (C. Nour), stern@vax2.concordia.ca (R.J. Stern).

^{*} Corresponding author. Fax: +961 9 547256.

equations were provided. These results extended to the bilateral case ones known for the (unilateral) minimal time function, which has an extensive literature. In this regard, see for example [4–6,14,18,19,21,22,25,26] for the regularity study of this function, and [1-3,8,11,23,26] for its Hamilton-Jacobi characterization. The reader can refer to Bardi and Capuzzo-Dolcetta [2, Chapter 4] for a thorough history of such results.

The regularity and Hamilton-Jacobi characterization of the state constrained (unilateral) minimal time function was studied (apparently for the first time) in Nour and Stern [17] and Stern [24], respectively. In [17], the Lipschitz continuity of this function was studied, as was its link with the unconstrained case, while [24] provides its characterization as the unique proximal solution of Hamilton-Jacobi equations with certain boundary conditions. The goal of the present article is to generalize these results to the bilateral case.

The plan of the paper is as follows: In the next section we present basic definitions and hypotheses. Then in Section 3 we shall study the regularity of the state constrained bilateral minimal time function $T_S(\cdot,\cdot)$. Section 4 is devoted to its Hamilton-Jacobi characterization.

2. Definitions and hypotheses

We denote by $\|\cdot\|$ the Euclidean norm and by \langle,\rangle the usual inner product. For $\rho>0$ and $\alpha\in\mathbb{R}^n$ we denote

$$B(\alpha; \rho) := \{x \in \mathbb{R}^n : ||x - \alpha|| < \rho\} \quad \text{and} \quad \bar{B}(\alpha; \rho) := \{x \in \mathbb{R}^n : ||x - \alpha|| \le \rho\}.$$

The open (resp. closed) unit ball in \mathbb{R}^n is denoted by B (resp. \bar{B}). For a set $A \subset \mathbb{R}^n$, comp A, int A, bdry A and co A are the complement (with respect to \mathbb{R}^n), the interior, boundary and convex hull of A, respectively. The distance from a point x to a set A is denoted by $d_A(x)$. Given a set A and a point x, we denote by $\operatorname{proj}_A(x)$ the set of closest points of x onto A, that is, the set of points $\alpha \in A$ which satisfy $d_A(x) = \|\alpha - x\|$.

Now we provide certain geometric definitions from nonsmooth analysis. Our general reference for such constructs is the book of Clarke, Ledyaev, Stern and Wolenski [7]. For a nonempty closed subset A of \mathbb{R}^n and a point $\alpha \in A$, the Bouligand tangent cone, proximal normal cone, limiting normal cone and Clarke normal cone to A at α are defined respectively by:

- $\operatorname{Tan}_A^B(\alpha) := \{ \lim \frac{\alpha_i \alpha}{t} : \alpha_i \xrightarrow{A} \alpha, t_i \downarrow 0 \};$ $N_A^P(\alpha) := \{ t(x \alpha) : \alpha \in \operatorname{proj}_A(x), t \geq 0 \};$
- $\begin{array}{l} -N_A^L(\alpha) := \{\lim \zeta_i : \zeta_i \in N_A^P(\alpha_i), \alpha_i \stackrel{A}{\longrightarrow} \alpha\}; \\ -N_A^C(\alpha) := \operatorname{co} N_A^L(\alpha). \end{array}$

Here $\alpha_i \stackrel{A}{\longrightarrow} \alpha$ means that $\alpha_i \in A$ and $\alpha_i \longrightarrow \alpha$.

Now let $f: \mathbb{R}^n \longrightarrow \mathbb{R} \cup \{+\infty\}$ be a lower semicontinuous function and let x be a point in its effective domain, that is, $x \in \text{dom } f := \{x' : f(x') < +\infty\}$. A vector $\zeta \in \mathbb{R}^n$ is said to be a proximal subgradient of f at x if $(\zeta, -1) \in N_{\text{epi }f}^P(x, f(x))$, where epi f the epigraph of f is defined by epi $f := \{(x', r) : r \ge f(x')\}$. The set of all such ζ is denoted by $\partial_P f(x)$ and is referred to as the *proximal subdifferential*. We can prove that one has $\zeta \in \partial_P f(x)$ if and only if there exists $\sigma = \sigma(x, \zeta) > 0$ such that

$$f(y) - f(x) + \sigma ||y - x||^2 \ge \langle \zeta, y - x \rangle,$$

for all y in a neighborhood of x. (The latter condition is known as the proximal subgradient inequality.)

Now let $S \subset \mathbb{R}^n$ be a closed set and let $F: \mathbb{R}^n \to \mathbb{R}^n$ be a multifunction. As mentioned in the introduction, the S-constrained bilateral minimal time function, denoted by $T_S(\cdot, \cdot)$, is defined by:

$$T_S(\alpha, \beta) := \inf\{T > 0 : x(t) \text{ is an } S\text{-trajectory of } F \text{ with } x(0) = \alpha \text{ and } x(T) = \beta\}.$$

If no S-trajectory exists between α and β , then $T_S(\alpha, \beta)$ is taken to be $+\infty$.

We shall assume throughout that F satisfies the following conditions:

- For every $x \in \mathbb{R}^n$, F(x) is a nonempty compact convex set.
- The linear growth condition: For some positive constants γ and c, and for all $x \in \mathbb{R}^n$,

$$v \in F(x) \Longrightarrow ||v|| \le \gamma ||x|| + c$$
.

Download English Version:

https://daneshyari.com/en/article/843175

Download Persian Version:

https://daneshyari.com/article/843175

<u>Daneshyari.com</u>