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Bifurcation of periodic orbits in a class of planar Filippov systemsI
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Abstract

In this paper we discuss the perturbations of a general planar Filippov system with exactly one switching line. When the system
has a limit cycle, we give a condition for its persistence; when the system has an annulus of periodic orbits, we give a condition
under which limit cycles are bifurcated from the annulus. We also further discuss the stability and bifurcations of a nonhyperbolic
limit cycle. When the system has an annulus of periodic orbits, we show via an example how the number of limit cycles bifurcated
from the annulus is affected by the switching.
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1. Introduction

The study of bifurcation phenomena in non-smooth dynamical systems has become very active in recent years
because non-smooth dynamical systems have been modelled in many fields. For example, relay feedback systems in
control theory [2,3,6], switching circuits in power electronics [4], impact and dry frictions in mechanical engineering
[8,13,14,24,29], a car brake system [36], etc. According to Leine and van Campen [25], there are basically three
types of non-smooth dynamical systems, namely non-smooth continuous systems, Filippov systems and systems which
expose discontinuities in time of the state. Due to the variety of the non-smoothness, these systems exhibit not only
standard bifurcations, but also complicated nonstandard bifurcation phenomena not existing in smooth systems, such
as grazing [5,10], border-collision [30] and sliding effects [8], etc. The study and classification of various kinds of
nonstandard bifurcation phenomena for non-smooth systems have attracted great attentions during the last decade,
see, for example, [5–8,10,13,14,18,19,25,30] and the references therein.

Another important issue is to investigate if some well-known bifurcations occurring in smooth systems, such as
Hopf bifurcation, homoclinic bifurcation and subharmonic bifurcation, also exist in non-smooth systems and if those
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known bifurcation methods can be generalized to non-smooth cases. In [26] Leine and Nijmeijer considered a non-
smooth Hopf bifurcation from which an equilibrium hits the line of discontinuity and loses its stability while periodic
orbits arise. In [35,36] Zou et al. discussed another case of non-smooth Hopf bifurcation for planar Filippov systems
where the equilibrium always stays on the smooth line of discontinuity but the bifurcated periodic orbit crosses the
line at least twice transversally. The focus-center-limit cycle bifurcation for a symmetric 3-dimensional piecewise
linear system was discussed by Freire et al. [17]. In addition, Melnikov methods for homoclinic and subharmonic
bifurcations were extended to non-smooth systems in [15,16,23,27]. As pointed out in [24], almost always the
generalization of the bifurcation methods for smooth systems to non-smooth cases is a non-trivial task.

The purpose of this paper is to study the limit cycles bifurcated from periodic orbits of a planar Filippov system.
Being an important class of non-smooth systems, a Filippov system [20] is a type of piecewise smooth (PWS) systems.
The phase space of a PWS system is split into disjoint connected subregions such that the defining vector field is
smooth in each subregion. Usually, the boundaries between the different regions are referred to as switching manifolds
or discontinuity surfaces. Filippov systems have widespread applications, particularly in control theory. Various relay
feedback systems can be classified as Filippov systems. There have been many papers (see e.g. in [2,3,21,22,28,33])
which dealt with the existence and stability of limit cycles for different kinds of linear relay feedback systems. Since
solutions of a linear relay feedback system can be given explicitly in each subregion, conditions for the existence and
stability of limit cycles can be obtained analytically by the method of state-space representations and the analysis of
Poincaré maps. However, the problem of the existence and stability of limit cycles is much more difficult for nonlinear
Filippov systems.

What we consider in this paper can be regarded as an extension of Poincaré bifurcation for smooth systems to
planar Filippov systems. Assume that the state space R2 is split into two disjoint regions Σ+ and Σ− by the switching
line Σ0 := {x ∈ R2

: cTx = 0} such that R2
= Σ+ ∪Σ0 ∪Σ−, where c = (c1, c2)

T
∈ R2 is a nonzero constant vector,

Σ+ := {x ∈ R2
: cTx > 0} and Σ− := {x ∈ R2

: cTx < 0}. Consider the following planar Filippov system

ẋ = g+(x)+ ε f+(x), x ∈ Σ+, (1.1a)

ẋ = g−(x)+ ε f−(x), x ∈ Σ−, (1.1b)

where g±, f± ∈ C2(Σ± ∪ Σ0,R2) and |ε| ≤ ε0 � 1 for some ε0 > 0. Moreover, let the following conditions hold:

(H1) For ε = 0, the phase portrait of the unperturbed system of (1.1), i.e.,

ẋ = g+(x), x ∈ Σ+, (1.2a)

ẋ = g−(x), x ∈ Σ−, (1.2b)

has either a limit cycle Γ , or a periodic annulus A consisting of a one-parameter family of periodic orbits Γh ,
where h ∈ J := (h1, h2) ⊆ R and J is a nonempty interval.

(H2) The limit cycle Γ (or each Γh in A) is a transversal unimodal periodic orbit of (1.2), i.e., it has only transversal
intersections with Σ0 and it intersects Σ0 exactly twice.

(H3) The limit cycle Γ (or each Γh in A) crosses Σ0 counterclockwise with travelling time T +, T − (or T +

h , T −

h ) in
Σ+, Σ− respectively.

Here the assumption (H3) is not essential because if Γ (or each Γh in A) crosses Σ0 clockwise, one can reverse
the time to satisfy (H3). A transversal unimodal periodic orbit of (1.2) that crosses Σ0 counterclockwise is shown in
Fig. 1.

In this paper, when (1.2) has a limit cycle Γ , we give a condition for its persistence; when (1.2) has a periodic
annulus A, we give a condition under which limit cycles are bifurcated from A. We also discuss the stability and
bifurcations of a nonhyperbolic limit cycle further. Moreover, when (1.2) has a periodic annulus A, we show via an
example how the number of limit cycles bifurcated from the annulus is affected by the switching.

This paper is organized as follows. The main results are presented in Section 2. We give estimates to the Poincaré
maps of periodic orbits in Section 3 and the proofs of the main results in Section 4. In Section 5, we consider the
stability and bifurcation of nonhyperbolic limit cycles. The discussions on the effects of switching and the relations
to a smooth system are presented in Section 6. Finally we apply our results to a nonlinear Filippov system of Liénard
type in Section 7.
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