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Entropy solutions for a fourth-order nonlinear degenerate problem
for noise removalI
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Abstract

In this paper, we establish the existence and uniqueness of entropy solutions for a fourth-order nonlinear degenerate parabolic
problem for noise removal in dimension 1 ≤ d < 4.
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1. Introduction

In this paper, we consider the following boundary value problem for the fourth-order nonlinear degenerate parabolic
equation

∂u
∂t

+ D2
i j

(
D2

i j u

|D2u|

)
= 0, (x, t) ∈ QT = (0, T ) × Ω , (1.1)

u(x, t) = 0, (x, t) ∈ (0, T ) × ∂Ω , (1.2)
∂u
∂ N

(x, t) = 0, (x, t) ∈ (0, T ) × ∂Ω , (1.3)

u(x, 0) = u0(x), x ∈ Ω , (1.4)

where Ω is a bounded open domain of Rd with appropriate smooth boundary, 1 ≤ d < 4, T > 0 is fixed, D2u ∈ Rd×d

is the Hessian matrix and |D2u| =

√∑d
i, j=1 |D2

i j u|2, N denotes the unit outward normal to the boundary ∂Ω . This
problem is very useful in image processing for noise removal and preventing staircasing, where u = u(x, t) represents
the original image describing a real scene (the unknown), and u0 is the observed image (the data).
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The use of partial differential equations for image processing has become a major research topic in the past
few years. One of the most popular and successful methodologies for image restoration is the use of the total
variation minimizing model which was firstly introduced by Rudin et al. [18]. However, because of penalizing little
discontinuities corresponding to edges, it possesses the staircasing property which may be undesirable under some
circumstances [8,20]. A remarkable approach to overcoming this flaw is to introduce higher order derivatives into the
energy [8,17,24]. In [17], one hopes to minimize the energy

Minimize
∫
Ω

|D2u| (1.5)

with some constraints. So constant gradient is allowed, which suppresses staircasing and the energy can be formally
identified by the Euler–Lagrange equation (1.1).

Though the effectiveness of fourth-order diffusion equations for noise removal has been shown [8,9,16,17,24], very
little is known about the theoretical analysis for the equations. We refer the reader to [15] for traveling wave solutions
in one dimension, [16] for weak solution by variational methods and [22] for a generalized thin film equation. Some
qualitative properties of solutions for this class of fourth-order diffusion equations (such as extinction in finite time,
convergence of the implicit Euler semidiscretization, and so on) can be found in [12].

In this paper, due to the fact that Eq. (1.1) has a strongly degenerate term, we have to introduce a notion of entropy
solution. And we present analysis of existence and uniqueness of the entropy solutions. In general we follow the
approach considered by Andreu et al., who study minimizing total variation flow ut = div(Du/|Du|) with L1-data [1–
6]. They gave the proper definition of the entropy solution and the proof of existence and uniqueness. However we
emphasize that the realization of this approach has some distinctive features in our case. They are connected with some
particularities of high order equations in comparison with the second-order ones and with the degenerate character of
our equations as well. A typical feature of all the works as regards the proof of the existence of a solution for TV flow
is to apply the Crandall–Liggett semigroup theory. However, it seems that this is not suitable for high order nonlinear
equations. We investigate the existence of the entropy solutions by employing the difference and variation methods
inspired by an idea from [23], where an existence result of Young measure solutions of a class of forward–backward
diffusion equations is proved. For the functional (1.5) depending on higher derivatives, the natural space for the
solutions is the space of functions of the bounded Hessian BH(Ω), which is developed by F. Demengel in [10,11]. For
some references concerning the BH space, we refer the reader to [7,10,11,13,14,19].

It worth mentioning that the boundary conditions for the natural choice are rather complicated and we refer the
reader to [17]. For convenience, we choose the zero boundary conditions, which corresponds to padding the boundary
of the image with black. However, the proof of this paper is also suitable for natural boundary conditions.

The plan of the paper is the following. In Section 2, we state some preliminaries and the definition of the entropy
solutions. Section 3 is devoted to the proofs of our main results.

2. Preliminaries and the statement of the main result

In the following we recall some basic notation and facts concerning the space of BH(Ω).
Denote by M(Ω , Rd×d) the space of the bounded measures on Ω with values in Rd×d and by | · |T the total

variation of a measure ofM(Ω , Rd×d), i.e.

|µ|T = sup

{∫
Ω

∑
i j

ϕi j dµi j ; ϕi j ∈ C0
0(Ω),

∑
i j

ϕ2
i j ≤ 1 in Ω

}
,

where C0
0(Ω) denotes the closure of continuous functions with compact support in Ω .

We introduce the space of functions with bounded Hessian in Ω

BH(Ω) = {u ∈ W 1,1(Ω); D2u ∈M(Ω , Rd×d)},

where D2u denotes the distributional Hessian of u. So if u ∈ BH(Ω), we have u ∈ W 1,1(Ω) and

|D2u|T = sup

{∫
Ω

∑
i j

ϕi j · udx; ϕi j ∈ C2
0(Ω),

∑
i j

ϕ2
i j ≤ 1 in Ω

}
.
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