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a b s t r a c t

Determining the best way to efficiently use limited water resources, for food and energy-dedicated crops,
has become crucial due to the rise in extreme events (floods/droughts) and higher variability in rainfall
attributed to global climate change. Changing climate conditions will require new crops to be adapted to
a changing agricultural environment. Reliable information on seasonal trends in crop growth and evapo-
transpiration with associated uncertainty/confidence ranges is crucial to guide the development of new
crops and management strategies to cope with future climate. Given that crop growth is strongly coupled
to soil moisture, developing reliable growth curves requires a detailed understanding of soil moisture at
the field-scale. Typically, it is impractical to collect soil samples to adequately assess soil moisture that
represents both spatial distribution at the field-scale and temporal dynamics on the scale of a growing
season (e.g. 110 days for cereals). A novel way to address soil moisture monitoring challenges is through
an integrated, agro-ecosystems-level approach using an integrated sensing system that can link data
from multiple platforms (wireless sensors, satellites, airborne imagery, near real-time climate stations).
Assimilated data can, then, be fed into predictive models to generate reference crop growth curves and
predict regionally-specific yield potentials. However, integrated sensing requires interagency coopera-
tion, common data processing standards and long-term, timely access to data. Large databases need to
be reusable by various organizations and accessible, in the future, with comprehensive metadata. During
the 2012 growing season a feasibility study was conducted which involved measuring field-scale soil
moisture with sensor network technology. The experiment utilized radially-distributed sensors for track-
ing in-season soil moisture. OpenGIS-compliant services and standards were utilized to provide long-
term access to sensor data and construct corresponding metadata. Sensor Model Language, an inter-oper-
able metadata format, was used to create documentation for the sensor system and sensing components.
Two different third party implementations of the Sensor Observation Service were tested for providing
long-term access to the data. This work discusses a set of key recommendations for monitoring field-scale
soil moisture dynamics for integration with remote sensing and models, including: (1) Improved in situ
sensing technology that would allow for less restrictive soil moisture measurements. (2) Integration of
field-scale in situ networks with regional remote sensing monitoring. (3) The development of software
and web services to integrate data from multiple sources with models for decision support.
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1. Introduction

Increasing pressures from climate change have led to substantial
uncertainty in the most efficient use of scare resources, especially in
more arid regions (IPCC, 2007). Increased vulnerability and risks for
rain-fed crop systems from extreme weather events and the need to
adapt to longer-term climate change variability is anticipated. Sub-
stantial changes in land use and crop rotations are expected,
accompanying changes in the availability of water for agricultural
production of food and energy-dedicated crops. Crop adaptation
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will be increasingly important in order to maintain productivity,
especially in regions where local food supply and its regional distri-
bution is insecure and most vulnerable (Lobell et al., 2008). For a
given region, certain crops may no longer be suitable while others
will become more viable alternatives. New crop alternatives, for
an example forage Brassicas, Ethiopian mustard (Brassica carinata)
and Camelina (Camelina sativa) (Blackshaw et al., 2011), could
potentially enable farmers to improve water-use efficiency, expand
management options, reduce farm inputs, and enhance cropping
system resilience. In this way, such crops could be introduced
within existing rotations, thereby reducing pressures on land for
growing food and supplying bioenergy. Crop adaptation, poten-
tially, allows farmers to make better use of scarce and variable
water resources (i.e., changes in precipitation amounts and vari-
ability). Better utilization of water in rain-fed crop systems could
potentially enhance the stability of agricultural production,
improve system resilience or maintain the flow of ecological goods
and services in the face of climatic change.

ETc ¼ KsKcET0 ð1Þ

Water and nutrient requirements must be integrated with sea-
sonal crop growth to reliably guide decisions about crop selection,
adaptation and development. Crop growth curves (termed ‘crop
curves’) with associated uncertainty/confidence ranges provide a
method to describe seasonal crop production under varying condi-
tions. Typically, crop curves are computed by considering the crop
specific consumptive use of water, such as evapotranspiration. The
crop evapotranspiration (ETc) can be predicted using a suitable ref-
erence evapotranspiration (ET0) observed from analysis of weather
conditions at a set of distributed climate/weather stations (Eq. (1)).
ET0 is then multiplied by a crop coefficient that varies through the
season depending on the growth stage of the crop. The Penman–
Monteith method (Allen et al., 1998), Eq. (1), has been the recom-
mended standard method for the definition and computation of
the ET0 with ETc from crop surfaces under standard conditions
determined by specific crop coefficients (Kc). Standard conditions
refer to regions that are disease-free, have well-fertilized crops,
grown in large fields, under optimum soil water conditions, and
achieve full production under the prescribed climatic conditions.
Clearly, such conditions are idealized and most crop production
would be expected to occur under a mix of sub-optimal conditions.
However, crop surfaces under non-standard conditions require
specification of additional factors/adjustments related to environ-
mental variables driving stress on growth. For example, if consid-
ering just water, this would be accomplished by introducing a
water stress coefficient (Ks) and/or by modifying the crop coeffi-
cient under expert opinion.

Complex process-based models could be used to represent and
integrate stress factors for computing regional and crop-specific
reference growth curves. Typically, sufficient data for complex pro-
cess-based models may not be available and the broader assump-
tions may be too strict and idealized. Statistical models that enable
a flexible mix of expert knowledge with available data, likely pro-
vide a better solution to producing crop curves that can be refined
and further evaluated using more complex process-based agro-
ecosystem models. Such enhanced crop curves could provide refer-
ence on soil productivity and crop yield (production) across crop
phenological development stages. Enhanced crop curves may pro-
vide reference crop water consumption and be used to comprehen-
sively identify alternative crops better suited to specific climates,
projected extreme variability, and soil quality.

Given that crop growth is strongly coupled to soil moisture, reli-
able crop curves require a detailed understanding of soil moisture
at the field-scale, within the growing season (May–August in
southern Alberta). Currently, the scarcity of field-scale soil mois-
ture and crop growth monitoring, is attributable to technical and

financial constraints (i.e. it is technically demanding and expen-
sive). Soil moisture variability has been shown to increase with
observation scale (field to regional) (Famiglietti et al., 2008). Regio-
nal climate changes could potentially affect profound responses in
soil moisture (McGinn and Shepherd, 2003; Porter and Semenov,
2005). In semi-arid agro-ecosystems, soil moisture has two sepa-
rate flow patterns related to the wetness of the soil. A vertically
dominated pattern when the soil is closer to dry and horizontally
dominated pattern when the soil is nearer to saturation (during
and immediately after precipitation events) (Grayson et al.,
1997). Monitoring of soil moisture could be very difficult due to
these uncertainties induced by sampling and changing environ-
mental conditions. Soil moisture is especially difficult to sample
in order to obtain the best field-scale representation of its spatial
distribution and how this changes over the growing season. The
use of distribution-based/probabilistic models has the potential
to provide crucial insights to better sample, integrate across data
platforms, and identify best management practices and generate
in-season forecasts of crop yield (Challinor et al., 2009). In irrigated
crop systems, soil moisture data may be used to inform irrigation
scheduling. In rain-fed crops, however, soil moisture data could
provide crucial information on the intensity, duration and timing
of moisture stress under rival cropping systems and management
practices. Crops may be identified that might be more tolerant of
moisture stress or escape detrimental moisture stress with earlier
seeding. Better timing of fertilizer nitrogen applications with ade-
quate available soil water, potentially improving water use effi-
ciency. In rain-fed systems the value soil moisture and crop
monitoring might be less as means to adapt management in real-
time, as in the case of irrigation scheduling. Instead, as rainfall
may become even more difficult to predict, soil moisture and crop
monitoring may be a means to better understand a crop system.
Confidence intervals of soil moisture for future years possibly
allow better manage scarce and variable moisture supplies in sub-
sequent growing seasons.

Sensor based precision agriculture generally utilizes one of two
soil sensing methods: reactive (real-time) sensing and predictive
(map-based sensing) sensing. A decision support system using
reactive sensing would provide management recommendations
based on local conditions at that time. A predictive system would
generate soil information only after off-site processing and inter-
pretation of the data (Adamchuk et al., 2011; Mahmood et al.,
2012). For rain-fed cropping systems the predictive method could
be utilized to predict future in-field soil moisture dynamics. Better
estimates of future growing season water scarcity may lead to
more appropriate crop selection and planting dates. The prediction
of soil moisture across time and space also requires analytical
methods/model development using long-term monitoring data.
The best way to address such challenges and uncertainty could
be through an integrated, agro-ecosystems-level approach. This
involves developing an integrated sensing system that can link
data from multiple platforms (wireless sensors, satellites, airborne
imagery, near real-time climate stations) and integrate it into pre-
dictive models for evapotranspiration, crop growth curves and
potential yields. Integrated sensing has the potential to provide
enhanced field-scale decision support on crop water use and its
variability over time and space. Integrated sensing has been
defined as the fusion of remote sensing observations and in situ
measurements for use in models to generate biogeophysical infor-
mation (Teillet et al., 2002). Interagency cooperation, common data
processing standards and long-term timely access to data are also
critical to support and enhance integrated sensing and remote data
delivery (Teillet et al., 2002).

Integration of data from multiple different sensors (both in situ
and remote) could potentially improve predictive modeling of soil
crucial variables by providing complementary data that varies in
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