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Abstract

In this paper we study stochastic optimal control problems with jumps with the help of the theory of Backward Stochastic
Differential Equations (BSDEs) with jumps. We generalize the results of Peng [S. Peng, BSDE and stochastic optimizations, in: J.
Yan, S. Peng, S. Fang, L. Wu, Topics in Stochastic Analysis, Science Press, Beijing, 1997 (Chapter 2) (in Chinese)] by considering
cost functionals defined by controlled BSDEs with jumps. The application of BSDE methods, in particular, the use of the notion
of stochastic backward semigroups introduced by Peng in the above-mentioned work allows a straightforward proof of a dynamic
programming principle for value functions associated with stochastic optimal control problems with jumps. We prove that the value
functions are the viscosity solutions of the associated generalized Hamilton–Jacobi–Bellman equations with integral-differential
operators. For this proof, we adapt Peng’s BSDE approach, given in the above-mentioned reference, developed in the framework
of stochastic control problems driven by Brownian motion to that of stochastic control problems driven by Brownian motion and
Poisson random measure.
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1. Introduction

Non-linear BSDEs in the framework of Brownian motion were first introduced by Pardoux and Peng [9] in
1990. They have been studied since then by many authors and have found various applications, namely in stochastic
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control, finance, and second order partial differential equations (PDE) theory. Non-linear BSDEs in the framework of
Brownian motion and Poisson random measure were first introduced by Tang and Li [16] in 1994.

On the other hand, the recursive utility functions defined from BSDEs are important because they can be index
scaling risks in the study of economics and finance (see El Karoui, Peng and Quenez [8], Chen and Epstein [4],
Duffie and Epstein [5,6], Duffie, Geoffard and Skiadias [7], etc). In [13], Peng gave a probabilistic representation
for systems of second order quasilinear parabolic PDEs which generalized the famous Feynman–Kac formula to
the non-linear case. There has been much research on relationships between BSDEs and PDEs, for example, by
El Karoui, Peng and Quenez [8], Peng [12,14,15], Pardoux and Peng [10], Yong and Zhou [17], etc. Using the
notion of viscosity solution, Peng [11,12], studied stochastic optimization theory of classical BSDEs and obtained
a dynamic programming principle (DPP). Using this principle, he proved the existence of the viscosity solution of a
type of generalized H–J–B equations with only differential operators. Barles, Buckdahn and Pardoux [1] considered
BSDEs with jumps and proved the existence and uniqueness of viscosity solutions for a type of integral–differential
PDEs, but, with no controls. With controls in the framework of Brownian motion and Poisson random measure it
becomes more hard to give the probabilistic representation for systems of generalized fully non-linear second order
H–J–B equations with integral–differential operators. In this paper we will investigate them with the help of the
theory of BSDEs with jumps and prove the existence of their viscosity solutions. First we investigate the stochastic
optimization theory of BSDEs with jumps and define an index functional from a BSDE with jump which is similar
to a recursive utility function. Taking the supremum over its controls, we get a value function. Using the dynamic
programming principle we obtained, we prove straightforward the existence of a viscosity solution for a type of
generalized integral–differential H–J–B equation, i.e., the value function is its viscosity solution.

Our paper is organized as follows. Section 2 and the Appendix recall some elements of the theory of backward
SDEs with jumps and forward–backward SDEs with jumps which will be needed in the remaining sections. Section 3
introduces the setting of stochastic optimal control problems with value functions W , and proves that they are
deterministic and satisfy the DPP. In Section 4, we make full use of the DPP and Peng’s method to prove that W
is the viscosity solution of the associated integral–differential H–J–B equation.

2. Preliminaries

Let (Ω ,F , {Ft }t≥0, P) be a complete probability space where F = {Ft : t ≥ 0} is a filtration satisfying the usual
conditions. {Ft }t≥0 is generated by the following two mutually independent stochastic processes:

(i) a d-dimensional standard Brownian motion {Bt }t≥0;
(ii) a Poisson random measure µ on R+ × E , where E = Rl

\ {0} is equipped with its Borel field B(E). The
compensator of µ is µ̂(dt, de) = dtλ(de) which makes {µ̃((0, t] × A) = (µ− µ̂)((0, t] × A)}t≥0 a martingale for all
A ∈ B(E) satisfying λ(A) < ∞. Here λ is an arbitrarily given σ -finite Lévy measure on (E,B(E)), i.e., a measure
on (E,B(E)) with the property that

∫
E (1∧ |e|

2)λ(de) <∞. We set T to be an arbitrarily prescribed positive number
and we call [0, T ] the time duration. Obviously, we have

Ft = σ

[∫ ∫
(0,s]×A

N (ds, dz) : s ≤ t, A ∈ B(E)
]
∨ σ [Ws : s ≤ t] ∨N ,

where N denotes the totality of P-null sets.
For any n ≥ 1, |z| denotes the Euclidean norm of z ∈ Rn . We also shall introduce the following three spaces of

processes which will be used frequently throughout the paper:

S 2(0, T ;R) := {(ψt )0≤t≤T real-valued F-adapted càdlàg process : E[ sup
0≤t≤T

|ψt |
2
] < +∞};

H2(0, T ;Rn) :=

{
(ψt )0≤t≤T Rn-valued F-progressively measurable process :

‖ψ‖2 = E

[∫ T

0
|ψt |

2dt

]
< +∞

}
;
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