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Strong convergence theorems on composite iterative schemes by the viscosity approxima-
tion methods for finding a zero of an accretive operator are established in Banach spaces.
The main results generalize the recent corresponding results of Aoyama et al. [K. Aoyama,
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1. Introduction

Let E be a real Banach space and C be a nonempty closed convex subset of E. Recall that a mapping f : C — Cisa
contraction on C if there exists a constant k € (0, 1) such that [|f(x) — f)|| < k|lx — yl|l, x, y € C. We use X to denote
the collection of mappings f verifying the above inequality. That is, X = {f : C — C | f is a contraction with constant k}.
Note that each f € X has a unique fixed pointin C.Let T : C — C be a nonexpansive mapping (recall that a mapping
T : C — C is nonexpansive if ||[Tx — Ty|| < ||x — y||, X, y € C), and F(T) denote the set of fixed points of T; that is,

F(T)={x e C:x=Tx}.

Recall that a (possibly multivalued) operator A C E x E with domain D(A) and range R(A) in E is accretive if, for each
Xx; € D(A) and y; € Ax; (i = 1, 2), there exists aj € J(x; — x3) such that (y; — y,j) > 0. (Here] is the duality mapping.)
An accretive operator A is said to satisfy the range condition if D(A) C R(I + rA) for all r > 0. An accretive operator A is
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m-accretive if R(I + rA) = E for each r > 0. If A is an accretive operator which satisfies the range condition, then we can
define, for each r > 0 a mappingJ, : R(I + rA) — D(A) defined by J, = (I + rA)~!, which is called the resolvent of A. We
know that J, is nonexpansive and F(J,) = A~'0 for all r > 0. The set of zeros of A is denoted by F. Hence

F:={zeD):0eAz} =A""0.

IfA~10 # @, then the inclusion 0 € Az is solvable.
We consider an iterative scheme: for resolvent J,, of m-accretive operator A,

Xn+1 :]rnxns n= 07 (1])

where the initial guess xq € E is chosen arbitrarily. The iterative scheme (1.1) has extensively been studied over the last
forty years for construction of zeros of accretive operators (see, e,g., [1-7]).

Recently, Kim and Xu [8] and Xu [9] provided a simpler modification of Mann iterative scheme in either a uniformly
smooth Banach space or a reflexive Banach space having a weakly sequentially continuous duality mapping for finding a
zero of an m-accretive operator A as follows:

{xo=er, (12)

Xn+1 = g + (1 - an)]rnxn,

where u € D(A) is an arbitrary (but fixed) element and the sequence {«,} in (0, 1) (see also [10,11]). They proved that {x,}
generated by (1.2) converges to a zero of m-accretive operator A under the control conditions:

(H1) limy, o @y = O,
(H2) Y02 on = 00, or, equivalently, [ 72 (1 — ) = 0,

(H3) 3"pp lotnt1 — | < 00,

(H4) ry > &, (n > 0), forsome e > 0and ) oo, |1 — r”r—;ll < 00, or
(H5) 1y > &, (n > 0), for some & > 0and Y o |1y — Fp—1] < 00.

Very recently, Aoyama et al. [12] studied the following iterative scheme in a uniformly convex Banach space having a
uniformly Gateaux differentiable norm: for resolvents J;, of an accretive operator A such that A='0 # ¢ and D(A) C C C
(-0 RU + 1A) and {ay} C (0, 1),

xo=x€C,
1.3
{xnﬂ = onX + (1 — otn)Jr Xn. (13)

They proved that {x,} generated by (1.3) converges strongly to a zero of A under the conditions (H1), (H2) and (H3) and
the condition (H5) on {r,}. In the case that C is a compact convex subset of a Banach space having a uniformly Gateaux
differentiable norm, Miyake and Takahashi [13] also proved the convergence of {x,} generated by (1.3) to a zero of an
accretive operator A such that D(A) C C C (),. o R(I + rA) under conditions (H1) and (H2) and limy—, oo 1 = 00.

Recently, Qin and Su [14] also considered the following iterative scheme in either a uniformly smooth Banach space or
a reflexive Banach space having a weakly sequentially continuous duality mapping, which is a simpler modification of the
iterative scheme (1.2):

Xo=x€E,
Yn = BnXp + (1 — ,Bn).]r,.xru (1.4)
Xnp1 = o + (1 — o) yn

where u € D(A) is an arbitrary (but fixed) element and sequences {«,} and {8,} in (0, 1). They proved that {x,} generated
by (1.4) converges strongly to a zero of m-accretive operator A under the conditions (H1), (H2) and (H3) on {«,} and {8,},
and the condition (H5) on {r,,}. Very recently, Ceng et al. [15] studied the following composite iterative scheme in the same
Banach spaces:

Xo =X€E,
[J’n = ol + (1 — on)Jr Xn, (1.5)
Xn+1 = (1 - ,Bn)yn + ﬂn]rnyna

where u € D(A) is an arbitrary (but fixed) element, under the control conditions (H1), (H2), (H3), (H5) and
(H6) By €10, a) forsomea € (0, 1) and > o2 [Bosr1 — Bul < 00.

On the other hand, as the viscosity approximation method [16,17], Chen and Zhu [ 18,19] considered the iterative scheme:
for resolvent J;, of m-accretive operator A, f € X¢ (C = D(A))and a, € (0, 1),

(1.6)

xo=x€eC
Xnp1 = opf (%) + (1 — an)]rnxny n>0.
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