Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/na

Convergence of composite iterative methods for finding zeros of accretive operators*

Jong Soo Jung*

Department of Mathematics, Dong-A University, Busan 604-714, Republic of Korea

ARTICLE INFO

Article history: Received 7 August 2008 Accepted 8 January 2009

MSC: 47H06 47H10 47J20 47J25 49M05

Keywords: Accretive operators Resolvents Composite iterative schemes Viscosity approximation methods Zeros, reflexive, strictly convex Uniformly Gâteaux differentiable norm

ABSTRACT

Strong convergence theorems on composite iterative schemes by the viscosity approximation methods for finding a zero of an accretive operator are established in Banach spaces. The main results generalize the recent corresponding results of Aoyama et al. [K. Aoyama, Y. Kimura, W. Takahashi, M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in Banach spaces, Nonlinear Anal. 67 (2007) 2350-2360], Ceng et al. [L.C. Ceng, A.R. Khan, Q.H. Ansari, J.C. Yao, Strong convergence of composite iterative schemes for zeros of m-accretive operators in Banach spaces, Nonlinear Anal. 70 (2009) 1830-1840], Kim and Xu [T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal. 61 (2005) 51-60], and Xu [H.K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators. J. Math. Anal. Appl. 314 (2006) 631-643] to viscosity methods in a strictly convex and reflexive Banach space having a uniformly Gâteaux differentiable norm. Our results also improve the corresponding results of [T.D. Benavides, G.L. Acedo, H.K. Xu, Iterative solutions for zeros of accretive operators, Math. Nachr. 248–249 (2003) 62–71; R. Chen, Z. Zhu, Viscosity approximation fixed points for nonexpansive and *m*-accretive operators, Fixed Point Theory Appl. 2006 (2006) 1–10; S. Kamimura, W. Takahashi, Approximation solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory 106 (2000) 226-240; P.E. Maingé, Viscosity methods for zeroes of accretive operators, J. Approx. Theory 140 (2) (2006) 127-140; K. Nakajo, Strong convergence to zeros of accretive operators in Banach spaces, J. Nonlinear Convex Anal. 7 (2006) 71-81].

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Let *E* be a real Banach space and *C* be a nonempty closed convex subset of *E*. Recall that a mapping $f : C \to C$ is a *contraction* on *C* if there exists a constant $k \in (0, 1)$ such that $||f(x) - f(y)|| \le k||x - y||$, $x, y \in C$. We use Σ_C to denote the collection of mappings f verifying the above inequality. That is, $\Sigma_C = \{f : C \to C \mid f \text{ is a contraction with constant } k\}$. Note that each $f \in \Sigma_C$ has a unique fixed point in *C*. Let $T : C \to C$ be a nonexpansive mapping (recall that a mapping $T : C \to C$ is *nonexpansive* if $||Tx - Ty|| \le ||x - y||$, $x, y \in C$), and F(T) denote the set of fixed points of T; that is, $F(T) = \{x \in C : x = Tx\}$.

Recall that a (possibly multivalued) operator $A \subset E \times E$ with domain D(A) and range R(A) in E is accretive if, for each $x_i \in D(A)$ and $y_i \in Ax_i$ (i = 1, 2), there exists a $j \in J(x_1 - x_2)$ such that $\langle y_1 - y_2, j \rangle \ge 0$. (Here J is the duality mapping.) An accretive operator A is said to satisfy the range condition if $\overline{D(A)} \subset R(I + rA)$ for all r > 0. An accretive operator A is

^k Tel.: +82 51 200 7213; fax: +82 51 200 7217.

E-mail address: jungjs@mail.donga.ac.kr.

 $[\]stackrel{ imes}{ au}$ This study was supported by research funds from Dong-A University.

 $^{0362\}text{-}546X/\$$ – see front matter S 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2009.01.010

m-accretive if R(I + rA) = E for each r > 0. If *A* is an accretive operator which satisfies the *range condition*, then we can define, for each r > 0 a mapping $J_r : R(I + rA) \rightarrow D(A)$ defined by $J_r = (I + rA)^{-1}$, which is called the resolvent of *A*. We know that J_r is nonexpansive and $F(J_r) = A^{-1}0$ for all r > 0. The set of zeros of *A* is denoted by *F*. Hence

$$F := \{z \in D(A) : 0 \in Az\} = A^{-1}0.$$

If $A^{-1}0 \neq \emptyset$, then the inclusion $0 \in Az$ is solvable.

We consider an iterative scheme: for resolvent J_{r_n} of *m*-accretive operator *A*,

$$x_{n+1} = J_{r_n} x_n, \quad n \ge 0,$$
 (1.1)

where the initial guess $x_0 \in E$ is chosen arbitrarily. The iterative scheme (1.1) has extensively been studied over the last forty years for construction of zeros of accretive operators (see, e.g., [1–7]).

Recently, Kim and Xu [8] and Xu [9] provided a simpler modification of Mann iterative scheme in either a uniformly smooth Banach space or a reflexive Banach space having a weakly sequentially continuous duality mapping for finding a zero of an *m*-accretive operator *A* as follows:

$$\begin{cases} x_0 = x \in E, \\ x_{n+1} = \alpha_n u + (1 - \alpha_n) J_{r_n} x_n, \end{cases}$$
(1.2)

where $u \in \overline{D(A)}$ is an arbitrary (but fixed) element and the sequence $\{\alpha_n\}$ in (0, 1) (see also [10,11]). They proved that $\{x_n\}$ generated by (1.2) converges to a zero of *m*-accretive operator *A* under the control conditions:

(H1) $\lim_{n\to\infty} \alpha_n = 0$, (H2) $\sum_{n=0}^{\infty} \alpha_n = \infty$, or, equivalently, $\prod_{n=0}^{\infty} (1 - \alpha_n) = 0$, (H3) $\sum_{n=0}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty$, (H4) $r_n \ge \varepsilon$, $(n \ge 0)$, for some $\varepsilon > 0$ and $\sum_{n=1}^{\infty} |1 - \frac{r_{n-1}}{r_n}| < \infty$, or (H5) $r_n \ge \varepsilon$, $(n \ge 0)$, for some $\varepsilon > 0$ and $\sum_{n=0}^{\infty} |r_n - r_{n-1}| < \infty$.

Very recently, Aoyama et al. [12] studied the following iterative scheme in a uniformly convex Banach space having a uniformly Gâteaux differentiable norm: for resolvents J_{r_n} of an accretive operator A such that $A^{-1}0 \neq \emptyset$ and $\overline{D(A)} \subset C \subset \bigcap_{r>0} R(I + rA)$ and $\{\alpha_n\} \subset (0, 1)$,

$$\begin{cases} x_0 = x \in C, \\ x_{n+1} = \alpha_n x + (1 - \alpha_n) J_{r_n} x_n. \end{cases}$$
(1.3)

They proved that $\{x_n\}$ generated by (1.3) converges strongly to a zero of A under the conditions (H1), (H2) and (H3) and the condition (H5) on $\{r_n\}$. In the case that C is a compact convex subset of a Banach space having a uniformly Gâteaux differentiable norm, Miyake and Takahashi [13] also proved the convergence of $\{x_n\}$ generated by (1.3) to a zero of an accretive operator A such that $D(A) \subset C \subset \bigcap_{r>0} R(I + rA)$ under conditions (H1) and (H2) and $\lim_{n\to\infty} r_n = \infty$.

Recently, Qin and Su [14] also considered the following iterative scheme in either a uniformly smooth Banach space or a reflexive Banach space having a weakly sequentially continuous duality mapping, which is a simpler modification of the iterative scheme (1.2):

$$\begin{cases} x_0 = x \in E, \\ y_n = \beta_n x_n + (1 - \beta_n) J_{r_n} x_n, \\ x_{n+1} = \alpha_n u + (1 - \alpha_n) y_n \end{cases}$$
(1.4)

where $u \in \overline{D(A)}$ is an arbitrary (but fixed) element and sequences $\{\alpha_n\}$ and $\{\beta_n\}$ in (0, 1). They proved that $\{x_n\}$ generated by (1.4) converges strongly to a zero of *m*-accretive operator *A* under the conditions (H1), (H2) and (H3) on $\{\alpha_n\}$ and $\{\beta_n\}$, and the condition (H5) on $\{r_n\}$. Very recently, Ceng et al. [15] studied the following composite iterative scheme in the same Banach spaces:

$$\begin{cases} x_0 = x \in E, \\ y_n = \alpha_n u + (1 - \alpha_n) J_{r_n} x_n, \\ x_{n+1} = (1 - \beta_n) y_n + \beta_n J_{r_n} y_n, \end{cases}$$
(1.5)

where $u \in \overline{D(A)}$ is an arbitrary (but fixed) element, under the control conditions (H1), (H2), (H3), (H5) and

(H6) $\beta_n \in [0, a)$ for some $a \in (0, 1)$ and $\sum_{n=0}^{\infty} |\beta_{n+1} - \beta_n| < \infty$.

On the other hand, as the viscosity approximation method [16,17], Chen and Zhu [18,19] considered the iterative scheme: for resolvent J_{r_n} of *m*-accretive operator $A, f \in \Sigma_C$ ($C = \overline{D(A)}$) and $\alpha_n \in (0, 1)$,

$$\begin{cases} x_0 = x \in C \\ x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) J_{r_n} x_n, & n \ge 0. \end{cases}$$
(1.6)

Download English Version:

https://daneshyari.com/en/article/843276

Download Persian Version:

https://daneshyari.com/article/843276

Daneshyari.com