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A B S T R A C T

Background: Detection and estimation of trends in cancer incidence rates are commonly achieved by
fitting standardized rates to a joinpoint log-linear regression. The efficiency of this approach is
inadequate when applied to a relatively low levels of incidence. We compared that approach with the
Cuscore test with respect to detecting a log-linear increasing trend of chronic myelomonocytic leukemia
(CMML) in datasets simulated to match a province of about 700,000 inhabitants.
Methods: For better efficiency, we replaced the standardized rate as the dependent variable with a
continuous statistic that reflects the inverse of the standardized incidence ratio (SIR). Both procedures
were applied to datasets simulated to match published results in the Girona Province of Spain. We also
present the use of the q-interval in displaying the temporal pattern of the events. This approach is
demonstrated by analyses of CMML diagnoses in Girona County (1994–2008).
Results: The Cuscore was clearly more efficient than regression in detecting the simulated trend. The
relative efficiency of the Cuscore is likely to be maintained in even higher levels of incidence. The use of
graphical displays in providing clues regarding interpretation of the results is demonstrated.
Conclusions: The Cuscore test coupled with visual inspection of the temporal pattern of the events seems
to be more efficient than regression analysis in detecting and interpreting data suspected to be at
elevated risk. A confirmatory analysis is expected to weed out 75% of the superfluous significant results.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Prediction of cancer incidence in a given population is often
based on fitting a joinpoint regression model [1–4] to the logged
standardized rates. This model assumes several consecutive linear
trends (connected at joined points). The predicted incidence is
based on the estimated annual percentage change (APC) derived
from the slope of the last part of the joinpoint regression. Although
it is well known that the efficiency of this procedure is inadequate
when applied to small numbers of incident cases [3,5], it has been
applied in such situations even when no incident cases were
observed [4,5].

That inefficiency may be related to the difficulty in
complying with linearity and with other restricted conditions
underlying regression. In contrast, the efficiency of temporal
clustering techniques is based only on appearance of clustering

among some consecutive cases. Such clustering is expected
under any form of increased rate (linear or not). Based on that
reasoning, we compared the efficiency of the Cuscore test [6–9]
with that of regression in detecting a log-linear increasing
rate in data of small incident numbers. The datasets were
simulated to match published results of chronic myelomono-
cytic leukemia (CMML; ICD-O-3 code: 9945/7) in Girona
province, Spain [4].

We replaced the usual dependent variable in the regression
analyses with the RI (relative interval) statistic. RI measures the
time intervening between two consecutive events where each
event includes a predefined number (r) of consecutive cases. Being
a continuous positive variable, it is somewhat more stable than any
adjusted rate (as the random variable of any adjusted rate is a
function of the annual observed number of cases) and bypasses the
need to deal with zero observed cases in some years.
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2. Data

2.1. Simulated datasets

Simulation of 300 datasets was carried out assuming 61 cases
diagnosed in a 15-year stable population with respect to size and
risk factors. Under the geometric series with an annual increase of
3.3%, the number of cases in the first year was calculated to be
n1 = 3.21.

The simulation was carried out for 60 cases, assuming that the
expected number of new cases in year t is: E(Xt) = 3.21*1.033t�1.
Accordingly, the expected interval between consecutive cases is E
(Wt) = 12/E(Xt) months. Assuming exponential distribution, the
number of months between consecutive diagnoses was randomly
allocated (using STATA [10]). When an interval extended over 2
years, we used a rule (described below) whereby the expected
interval was determined as either E(Wt) or E(Wt+1). It should be
noted that either choice leads to a biased allocated time interval.
However, for data covering 15 years, the bias will be in intervals of
14 (out of 60) cases at most, and will affect the waiting time of only
1/r cases of the relevant event. In order to minimize bias, the choice
between E(Wt) and E(Wt+1) was made such that most of the
interval is allocated under the correct E(Wt). By our rule of thumb,
the allocated time interval was according to E(Wt+1) if the time
remaining in year t after the diagnosis date of the previous case
was less than E(Wt)/4.

The analyses are based on the recorded time of events where
each event includes r consecutive cases. The three r values are: 3, 4
and 5. We grouped the data into three r groups (each with 100
datasets) according to the size of r.

2.2. CMML cases in Girona County (1994–2008)

Our approach is demonstrated using real data recorded during a
15-year period in Girona County.

2.2.1. Girona County Region (the Central Comarca of the Province of
Girona)

Girona County constitutes about one-fourth of Girona prov-
ince’s population and half of its latitude. The community of the
county is better off than the community of Catalonia en bloc with
respect to economic welfare and healthcare availability. In general,
residential communities are quite stable (in size and profile) over
the 15-year period. However, an influx of young people of working
age began in the mid-1990s. The possible effect of that immigra-
tion on the age profile of our analyzed data was found to be
negligibly small [11,12].

2.2.2. Reference population
The best affordable a priori reference population was extracted

as an aggregate of the annual counts over 36 age and gender strata
and 221 municipalities of Girona Province. Catalonian Statistics
Institute (IDESCAT) strata counts exist only for the last 10 years
(1999–2008). However, municipal census could be accessed
directly. The ultimate dataset originated from municipalities’
census apiece plus smoothing splines generalized linear model
(GLM) including Poisson response. This yielded a 15-year
aggregated reference for 1994–2008.

2.2.3. Annual expected number of cases
Specific age and gender incidence rates were assumed to be the

rates observed in the Girona Province during the 15-year period
from 1994 to 2008. Denoting by RS the age- and gender-specific
rate in the reference population, and by NS,t the relevant group size
in Girona County in year t, the expected number of new cases in
year t is: E(Xt) =

P
Rs*NS,t.

3. Methods

3.1. Test statistics

3.1.1. The RI
The RI statistic is defined as w/E(W), where w is the observed

number of months intervening between two consecutive events
and E(W) is the expected number of months between two
consecutive diagnoses. Accordingly, the length of RI is simply
the expected number of cases during w months. It can easily be
updated with respect to temporal changes in the population’s
profile by updating annually the expected number of cases. Thus, RI
is the waiting time until the event, measured by the expected
number of cases regardless of the current E(W) length. As such its
distribution is gamma and its mean is the event size r. The fact that
the mean time until the event equals the event size is clear. This is
so since the expected time until a single case is E(W) months,
hence the expected time until r cases is r*E(W), thus RI = r*E(W)/E
(W) = r. Practical details of RI calculation are demonstrated in 4.2.

It is interesting to note that when the annual expected number
of cases is r, RI/r is the inverse of SIR, since RI/r = exp/obs � 1/SIR.
The difference between the two measures is the random variable. It
is the observed number in SIR and the expected number of cases in
RI.

Based on this, and in order to comply with the common practice
in which trend analysis is based on the annual incidence, we
suggest that r is defined as the upper integer of the annual
expected number of cases at baseline. It is quite likely – even under
an increasing trend – that the number of cases expected annually is
still close to r. In our simulated data, analyses are based on r = 4. We
also analyzed data in which the event included three or five cases.
Results of these two r values provided better insight regarding the
relative efficiency of the two tests.

The easy accommodation of RI under changing conditions, and
the fact that its gamma distribution depends only on r, enabled the
derivation of several procedures aimed at detection and interpre-
tation of the increased rate of cancer diagnoses [6–9,13–18].

3.1.2. The q-interval
The q-interval [17] is defined as the a-priori probability that the

waiting time until the event is longer than that observed. Namely,
it is the a-priori probability that the rth case of an event is
diagnosed after the observed RI. As a gamma distributed variable,
the q-interval can also be calculated under the Poisson distribution.
Under the Poisson it is defined as the probability that no more than
r-1 cases are observed during an interval in which RI cases should
be expected. For example, suppose that r = 4, E(W) = 3 months and
w = 16 months. Namely, four cases were observed during a period
in which (RI = 16/3 = ) 5.33 cases should be expected. According to
the Poisson distribution, the probability that no more than three
cases are observed during RI = 5.33 is the q-interval = 0.222.

Although the q-interval is calculated as a probability value, it is
actually a random variable derived from an observed random event
(RI). It is a cumulative probability of a continuous random variable;
as such, its distribution is uniform over 0–1 [19]. Accordingly,
under stable conditions, its expected value is 0.5 (for any r value)
and >0.5 under elevated incidence. Based on that distribution we
can use the q-interval in graphical display of the temporal pattern
of the events.

3.2. Analyses

Both regression and Cuscore procedures were applied to each of
the simulated datasets. The relative efficiency of the two
procedures was tested for significance (two-tailed) by applying
McNemar’s test [20].
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