Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

We consider a version of Ulm's method obtained when the derivative in its definition is

replaced by the divided difference operator. The convergence analysis of the proposed

method, carried out under the *regular continuity* assumption, more general and more flexible than the traditional Lipschitz continuity, has produced the convergence condition,

existence and uniqueness radii, and error bounds, all shown to be sharp.

ULM'S method without derivatives

A. Galperin*

Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

ABSTRACT

ARTICLE INFO

Article history: Received 7 August 2007 Accepted 12 January 2009

MSC: 47J25 65J15

Keywords: Nonlinear operator equations Iterative methods Convergence analysis Functional equations

1. Introduction

In [1] Ulm proposed to solve nonlinear operator equations

$$\mathbf{f}(x) = 0$$
, $\mathbf{f}: X \supset D \rightarrow W$, X, W are Banach spaces,

by the following iterative method:

$$\mathbf{B}_{n+1} := 2\mathbf{B}_n - \mathbf{B}_n \mathbf{f}'(x_n) \mathbf{B}_n, \qquad x_{n+1} := x_n - \mathbf{B}_{n+1} \mathbf{f}(x_n).$$

(see also [2] for its analysis and a numerical example). The method has several attractive properties. First, it is (like Newton's method) self-correcting. Second, it is able to converge with Newton-like rate. Third, it is (unlike Newton's method) "inversion free": no linear problem has to be solved at each iteration. Fourth, apart from solving the problem (1.1), the method generates successive approximations **B**_n to the inverse derivative $\mathbf{f}'(x_{\infty})^{-1}$ at the solution x_{∞} , which is very helpful when one is interested in the solution's sensitivity to small perturbations. So, in fact, the method solves the system

$$f(x) = 0$$
 & $Xf'(x) = I$

for the pair $(x, \mathbf{X}), x \in D \subset X, \mathbf{X} \in \mathcal{L}(W, X)$ (the space of bounded linear operators acting from W into X). At the same time, the method has a serious shortcoming: the derivative $\mathbf{f}'(x)$ has to be evaluated at each iteration. This makes it unapplicable to equations with nondifferentiable operators and in situations when evaluation of the derivative is too costly.

The secant method

 $x_{n+1} := x_n - [x_n, x_{n-1}, \mathbf{f}]^{-1} \mathbf{f}(x)$

is free from this shortcoming, but suffers from another one: it is not inversion free. So, it is only natural to try to marry these two interesting methods to obtain a new one, which would retain valuable traits of both, but none of their undesirable ones.

* Tel.: +972 8 6490516.

© 2009 Elsevier Ltd. All rights reserved.

(1.1)

E-mail addresses: gal@math.bgu.ac.il, galperin3@gmail.com.

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter S 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2009.01.044

This idea is not new. It is suggested in a certain form already in [1] and rediscovered in [3]. Later the hybrid method

$$\mathbf{B}_{n+1} \coloneqq \mathbf{2}\mathbf{B}_n - \mathbf{B}_n[x_n, x_{n-1}, \mathbf{f}]\mathbf{B}_n, \qquad x_{n+1} \coloneqq x_n - \mathbf{B}_{n+1}\mathbf{f}(x_n), \tag{1.2}$$

was discussed in [4,5] (I am unaware of more recent publications where this method was mentioned). In those works, the method (1.2) is studied under assumption that the divided difference operator [x, y, f] is Lipschitz continuous in the sense that

$$\max\{\|[x, y, \mathbf{f}] - \mathbf{f}'(x)\|, \|[x, y, \mathbf{f}] - \mathbf{f}'(y)\|\} \le c \|x - y\|.$$
(1.3)

The purpose of the present paper is to offer a new Kantorovich-type convergence analysis of the hybrid method (1.2) based on a more general and more flexible continuity assumption which we call *regular continuity* [6,7]. To make the paper self-contained, we recall briefly in the next section some facts from [8] pertinent to this notion that are necessary for understanding subsequent developments. Also, two new examples are provided there, demonstrating techniques for finding a regular continuity modulus of a divided difference of a nonlinear operator. A majorant generator for (1.2) is devised and discussed in Section 3. The convergence theorem is proved and commented upon in Section 4.

2. Regularly continuous divided differences

Let **f** be a nonlinear operator acting from an open convex subset *D* of a Banach space *X* into another Banach space *W*.

Definition 2.1. A linear bounded operator **A** from X into W is called a divided difference operator (briefly dd), if for any given pair (x, y) of points of D it satisfies the (secant) equation

$$\mathbf{A}(x-y) = \mathbf{f}(x) - \mathbf{f}(y).$$

To emphasize its dependence on x, y, and f, such an operator is designated by the symbol [x, y, f].

For given $x \in X$ and $w \in W$, linear operators satisfying the equation Ax = w constitute an affine manifold in the space $\mathcal{L}(X, W)$ of all bounded linear operators between X and W:

$$\mathbf{A}_0 x = w \quad \& \quad \mathbf{A} x = w \Longrightarrow (\mathbf{A} - \mathbf{A}_0) x = 0 \Longrightarrow \mathbf{A} \in \mathbf{A}_0 + \mathcal{L}_x$$

where $\mathcal{L}_x \subset \mathcal{L}(X, W)$ is the subspace of operators vanishing on *x*. So, the symbol $[x, y, \mathbf{f}]$ should be understood as the notation for this manifold or, more precisely, as its particular representative selected from it according to a certain rule specified in advance. If $[x, y, \mathbf{f}]$ is selected to be continuous at *x* with respect to *y*, then it is easy to see that $[x, x, \mathbf{f}] = \mathbf{f}'(x)$. Otherwise, $\lim_{t\to+0} [x, x + th, \mathbf{f}]h = \lim_{t\to+0} t^{-1} [\mathbf{f}(x + th) - \mathbf{f}(x)]$ (if it exists) may vary depending on *h*, ||h|| = 1. In this case, this limit is the directional derivative $\mathbf{f}'(x, h)$ of \mathbf{f} in the direction *h*.

Numerous convergence analyses of the secant method appearing in literature impose on $[x, y, \mathbf{f}]$ one or another continuity assumption, more general than (1.3). For example, Potra in [9,10] assumes dd to be a *consistent approximation* to the derivative:

$$\|[x, y, \mathbf{f}] - \mathbf{f}'(u)\| \le c(\|x - u\| + \|y - u\|), \quad \forall x, y, u \in D.$$
(2.4)

In [11,12], the inequality

$$\|[x, y, \mathbf{f}] - [u, v, \mathbf{f}]\| \le c(\|x - u\| + \|y - v\|), \quad \forall x, y, u, v \in D.$$
(2.5)

(*Lipschitz continuity* of dd) is required. In [13] Hernández and Rubio replace Lipschitz continuity by the more general *Hölder continuity*, which means that

$$|[\mathbf{x}, \mathbf{y}, \mathbf{f}] - [\mathbf{u}, v, \mathbf{f}]|| \le c(||\mathbf{x} - u||^p + ||\mathbf{y} - v||^p), \quad \forall \mathbf{x}, \mathbf{y}, \mathbf{u}, v \in D.$$
(2.6)

for some $p \in (0, 1]$. In [14–16] these authors relax this requirement still further, assuming that a continuous nondecreasing function $\omega : [0, \infty) \times [0, \infty) \rightarrow [0, \infty)$ is known such that

$$\|[\mathbf{x}, \mathbf{y}, \mathbf{f}] - [\mathbf{u}, \mathbf{v}, \mathbf{f}]\| \le \omega(\|\mathbf{x} - \mathbf{u}\|, \|\mathbf{y} - \mathbf{v}\|), \quad \forall \mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v} \in D.$$
(2.7)

It is noted however that assumptions of the type of ω -continuity

$$\|[x, y, \mathbf{f}] - [u, v, \mathbf{f}]\| \le \omega(\|x - u\| + \|y - v\|), \quad \forall x, y, u, v \in D.$$
(2.8)

are too general for meaningful convergence analysis. First, we observe that the least ω satisfying (2.8)

$$\underline{\omega}(t) := \sup_{x, y, u, v} \left\{ \| [x, y, \mathbf{f}] - [u, v, \mathbf{f}] \| \ \Big| \ (x, y, u, v) \in D^4 \quad \& \quad \|x - u\| + \|y - v\| \le t \right\},$$

in addition to being continuous and nondecreasing, vanishes at zero and subadditive: $\underline{\omega}(s+t) \leq \underline{\omega}(s) + \underline{\omega}(t), \forall s > 0, t > 0$. The functions ω possessing all four properties

(i) $\omega(0) = 0$,

(ii) continuity on $[0, \infty)$,

(iii) monotonicity,

(iv) subadditivity,

Download English Version:

https://daneshyari.com/en/article/843309

Download Persian Version:

https://daneshyari.com/article/843309

Daneshyari.com