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a b s t r a c t

We consider global solutions of a dynamical equation in ferrimagnet. We show that it
admits a global weak solution by using the penalty method. By the energy estimates
method we show there exists a unique global smooth solution. Finally we establish the
relationship between this equation and wave maps.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we consider the following dynamical equation in ferrimagnetic materials of the following form{
ut = u× �u+ λu× (u× �u), inΩ × R+,
u(x, 0) = u0, ut(x, 0) = u1,

(1.1)

where u = (u1, u2, u3) ∈ S2 (i.e. the unit sphere in R3) is the unknown vector that maps a regular domainΩ ⊂ Rd to the
unit sphere S2 ⊂ R3,× denotes the cross product in R3 and λ > 0 is a positive damping parameter.
This equation was first derived by Borisov, Kiseliev and Talutz in [2] when studying the ferrimagnetic phenomenon in

ferrimagnetic materials. Just as the Landau–Lifshitz equation (see for [3–5])
ut = u×∆u− λu× (u×∆u) (1.2)

is important in the study of continuum ferromagnets, this equation plays a key role in the study of ferrimagnetic materials.
It aroused the interests of both physicists and mathematicians greatly. Thus we should study it mathematically rigorously.
Formally, this equation is very similar to the Landau–Lifshitz equation with the Laplacian operator∆ replaced by the wave
operator �.
Wavemaps aremaps fromMinkowski spaceM into a RiemannianmanifoldN ↪→ Rk that satisfy thewave equationwith

partial derivatives replaced by covariant derivatives. They are the prototypes of geometric wave equations and are studied
bymany authors and the interested readers can refer to [8] for more details. It can be also regarded as a wave equation from
M to Rk, with the range restricted to the manifold N . When the target manifold is the unit sphere Sk ↪→ Rk+1, the wave
map reads

�u = (|∇u|2 − |ut |2)u. (WM)
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We should add here that this is the famous nonlinear σ -model, and it is important in the study of the dynamics of anti-
ferromagnetic materials, see [6,7,9] for more details.
For the Landau–Lifshitz equation (1.2), Alouges and Soyeur [1] established the existence ofweak solutions and considered

the limit as the damping parameter goes to zero or to infinity. On the other hand, Guo and Hong [4] established the
relationship between the Landau–Lifshitz equation and the heat flow of harmonic maps. Then two natural questions arose.
One is whether there exist suitable solutions for Eq. (1.1), another one is the relationship between this equation and the
wave map (WM) fromΩ to S2. These questions are our main targets in this paper.
We will consider two important cases. The first one is when the problem is posed periodically. In this case, we denote

M = Ω = [−L1, L1] × · · · × [−Ld, Ld], and the problem (1.1) is completed with the periodical condition u(x − L, t) =
u(x + L, t), where the vector L = (L1, . . . , Ld). We will consider the existence of weak solutions of the periodical problem.
For this purpose, we need to make clear what a weak solution is. It is not difficult to verify that when u is regular, by taking
cross product with λu, Eq. (1.1) is equivalent to

1
1+ λ2

∂tu−
λ

1+ λ2
u× ∂tu− u× ∂ttu+ u×∆u = 0. (1.3)

This leads us to introduce the following notion of a weak solution for Eq. (1.1).

Definition 1.1. Let u0 ∈ H1(M), |u0| = 1 a.e., and u1 ∈ L2(M). We say that u(x, t) is a weak solution of the problem (1.1)
provided:
(i) for all T > 0, u ∈ L2(0, T ;H1(M)), ut ∈ L2(0, T ; L2(M)), with |u| = 1 a.e.;
(ii) for allΦ ∈ H1(M × [0, T ]), withΦ(x, T ) = 0, then there holds:

1
1+ λ2

∫
MT
ut · Φdxdt +

λ

1+ λ2

∫
MT
(u× ut) · Φdxdt +

∫
M
(u× ut) · Φ|t=0dx

+

∫
MT
u× ut · Φtdxdt −

m∑
i=1

∫
MT
u×

∂u
∂xi
·
∂Φ

∂xi
= 0; (1.4)

(iii) u(x, 0) = u0(x) in the trace sense.

In this case, we have the following:

Theorem 1.1. Let u0 ∈ H1(M, S2) and u1 ∈ L2(M, TuS2). Then there exists a global weak solution of the problem (1.1) with
initial data (u0, u1).

The second case is when the problem is posed inRd. For this Cauchy problem, we can only have the local well-posedness
result in dimension d ≥ 2, however when we restrict ourselves to dimension d = 1, we have the global well-posedness
result.

Theorem 1.2. For any data (u0, u1) ∈ L2loc(R) × H
1(R), such that ∇u0 belongs to H1(R), |u0| = 1 a.e., there exists a unique

global smooth solution u of class H2 which preserves the regularity of the initial data.

We remark that the existence of global smooth solutions in the periodical case can be established as the same and we
will not handle it explicitly in this paper.
In the final section, we show that when the damping parameter λ → ∞, the solution approximates to the wave map

that takes values in S2. Thus we find new interpretations of the wave maps, and this may link the mathematical studies of
wave maps to applications in physics.
Throughout this paper,Du = (ut ,∇u) always denotes the space–time derivative of u, and TuS2 denotes the tangent space

of S2 at u. We use ‖ · ‖ to denote the L2-norm and ‖ · ‖X to denote the X-norm on either M or Rd. MT always denotes the
productM × [0, T ] and C denotes a constant which can vary from line to line.
This paper is organized as follows. In the next section, we prove Theorem 1.1. In Section 3, we prove Theorem 1.2. Finally

in Section 4, we show its relationship with wave maps.

2. Proof of Theorem 1.1

In this section, we focus ourselves on the existence of global weak solutions of Eq. (1.1). For this purpose, we deduce two
equivalent forms of this equation. One is (1.3) and the other one is by taking the cross product of Eq. (1.3) with u,

�u+
λ

1+ λ2
∂tu+

1
1+ λ2

u× ∂tu+ (|∂tu|2 + |∇u|2)u. (2.1)

We then construct the following penalized problem of this equation

∂ttuk −∆uk +
λ

1+ λ2
∂tuk +

1
1+ λ2

uk × ∂tuk + k(|uk|2 − 1)uk = 0, (2.1k)

completed with initial data uk(x, 0) = u0 and ukt (x, 0) = u1.
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