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a b s t r a c t

Brusselator is an important dynamical system which can be described by a reaction–
diffusion system. In this paper it is proved that this reaction–diffusion system possesses
a global attractor A in the corresponding phase space. The upper and lower bounds of
Kolmogorov ε-entropy ofA are obtained.
Moreover we give a more detailed study of spatial chaos of the attractor A for the

Brusselator in RN . We interpret a group of spatial shifts as a dynamical system which
acts on the attractor A. By using the technique of unstable manifolds, it is proved that
this dynamical system is chaotic. In order to clarify the nature of this chaos, we construct
the Lipschitz-continuous homeomorphic embedding of a typical model dynamical system
whose chaotic behavior is evident, into the spatial shifts on the attractor A. This typical
dynamical system generalizes the symbolic system. It was first introduced by Zelik.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the following Cauchy problem of a reaction–diffusion system

ut = d∆u− (b+ 1)u+ u2v + a, (1.1)

vt = d∆v + bu− u2v, x ∈ RN , t > 0, (1.2)
u(x, t = 0) = u0(x) ≥ 0, v(x, t = 0) = v0(x) ≥ 0. (1.3)

This system is a model of a certain chemical morphogenetic process due to Turing [23]. It is named Brusselator. Here d, a
and b are strictly positive constants, N = 1, 2, 3.
System (1.1) and (1.2) has been extensively studied, see [1,3,9,11,13,16,17,19,20,24, etc.], and references therein. In

particular, system (1.1) and (1.2) was applied to study oscillatory Turing pattern [23], stationary pattern selection and
competition [3]. Hollis, Martin and Pierre [11] proved existence of a global bounded solution of (1.1) and (1.2) with initial
boundary conditions in the bounded domain of RN . For fixed v0, the global attractor of u for problem (1.1)–(1.3) was
established in [9].
To study the spatial chaos of problem (1.1)–(1.3), the classical Sobolev spaces (such as H l(RN) (l ≥ 1)) do not seem to

be adequate because nondecaying initial data and a number of natural structures from the physical point of view (such as
spatially periodic solutions, travelling waves, static states, etc.) are out of consideration. For example, it is obvious that the
static state (us, vs) = (a, b/a) is a solution of (1.1) and (1.2), but us, vs 6∈ C([0, T ];H l(RN)). Therefore we discuss system
(1.1)–(1.3) in some weighted Sobolev spaces such as [7,26,27, etc.].
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Definition 1.1 ([27]). A function φ ∈ Cloc(RN) is a weight function with the growth rate α ≥ 0 if the conditions φ(x+ y) ≤
Cφeα|x|φ(y) and φ(x) > 0 are satisfied for every x, y ∈ RN .

Definition 1.2 ([27]). Let φ be a weight function with the growth rate α. We define the spaces

W l,pφ (R
N) =

{
u ∈ D ′(RN) : ‖u‖pφ,l,p ≡

∑
|β|≤l

∫
RN
φ(x)|∂βx u(x)|

pdx <∞, l ∈ N

}
,

W l,pb,φ(R
N) =

{
u ∈ D ′(RN) : ‖u‖pb,φ,l,p ≡ sup

x0∈RN
φ(x0)‖u, B1x0‖

p
l,p <∞, l ∈ N

}
.

We will writeW l,pb instead ofW
l,p
b,1.

It is obvious that the static state (us, vs) = (a, b/a) of (1.1) and (1.2) belongs toW
l,p
b (R

N).
The semi-linear system of parabolic equations
ut = a∆xu+ λ0u− f (u,∇u)+ g(x), x ∈ Ω, (1.4)
u|∂Ω = 0, u|t=0 = u0, (1.5)

in an unbounded domainΩ has been studied in [4,7,26,27] and references therein. If the nonlinear function f (u,∇u) satisfies
the dissipation assumption

f (u,∇u) · u ≥ −C, (1.6)
the global attractor of (1.4) and (1.5) has been constructed, the upper and lower bounds of Kolmogorov ε-entropy of the
infinite-dimensional global attractor for Eqs. (1.4) and (1.5) have been obtained, and the spatial complexity and spatial
chaos of the global attractor for Eqs. (1.4) and (1.5) have been studied in [7,26,27] and references therein. Unfortunately, the
nonlinearity of Eqs. (1.1) and (1.2) does not satisfy the dissipation assumption (1.6).
The well-posedness of some reaction–diffusion systems in RN has been extensively studied by many authors, see [6,10,

18, etc.] and references therein.
For system (1.1)–(1.3), the global well-posedness of the solution in L∞

(
[0,∞);W 2,2b (RN)

)
has been established in [9].

In this paper we construct the attractor A of system (1.1)–(1.3) which is bounded in W 2,2b (RN) and compact in a local
topology ofW 2,2loc (R

N). AlthoughHausdorff dimension and fractal dimension of this attractorAmay be infinite, the upper and
lower bounds of Kolmogorov ε-entropy of the attractor A are obtained. In order to study the spatial chaos of the attractor
A, we interpret a group of spatial shifts as a dynamical system which acts on the attractor A. By using the technique
of unstable manifolds, it is proved that this dynamical system is chaotic. In order to clarify the nature of this chaos, we
construct the Lipschitz-continuous homeomorphic embedding of a typical model dynamical systemwhose chaotic behavior
is evident, into the spatial shifts on the attractorA. This typical dynamical system generalizes the symbolic system. It was
first suggested by Zelik [7,26,27].
Throughout this paper, in order to simplify the exposition, different positive constants might be denoted by the same

letter C; if necessary, by C(·, ·)we denote the constant depending only on the quantities appearing in parentheses.
The plan of this paper is as follows. In Section 2, we derive several a priori estimates for the solutions of (1.1)–(1.3), and

establish the global well-posedness of the solution again. In Section 3, we construct the global attractor A, and obtain the
upper bound of Kolmogorov ε-entropy of attractorA. In Section 4, we study the spatial chaos of attractorA, and obtain the
lower bound of Kolmogorov ε-entropy of attractorA.

2. A priori estimates, existence and uniqueness of solution

In this section, our main task is to improve a priori estimates in [9]. First we recall the properties of several classes of
Sobolev spaces in unbounded domains, which will be used blow. For a detailed study of these spaces, see [7,26,27].

Proposition 2.1 ([27]). Let φ be a weight function with the growth rate α, and R be a positive number. Then the following
estimates are valid:

C2

∫
RN
φ(x)|u(x)|pdx ≤

∫
RN
φ(x0)

∫
BRx0

|u(x)|pdx dx0 ≤ C1

∫
RN
φ(x)|u(x)|pdx. (2.1)

Corollary 2.2 ([27]). The equivalent norm in a weighted Sobolev space W l,pφ (R
N) is given by

‖u‖φ,l,p =
(∫
RN
φ(x0)‖u, BRx0‖

p
l,pdx0

)1/p
. (2.2)

In particular, norms (2.2) are equivalent for different R ∈ R+.
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