

Available online at www.sciencedirect.com

Nonlinear Analysis 69 (2008) 1138-1144

www.elsevier.com/locate/na

On periodic solutions for even order differential equations

Jinhai Chen^{a,*}, Donal O'Regan^b

^a Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
^b Department of Mathematics, National University of Ireland, Galway, University Road, Galway, Ireland

Received 19 October 2006; accepted 7 June 2007

Abstract

A class of sufficient conditions are obtained for the existence of a unique 2π -periodic solution of even order differential equations, employing an initial value problem. © 2007 Elsevier Ltd. All rights reserved.

MSC: 34B10; 34B15

Keywords: Even order differential equation; Periodic solution; Homeomorphism; Initial value problem

1. Introduction

In this paper, we consider the existence and uniqueness of periodic solutions for the following even order differential system:

$$\left(g(t)u^{(k)}\right)^{(k)} + \sum_{j=1}^{k-1} \alpha_j u^{(2j)} + (-1)^{k+1} h(t, u) = f(t), \tag{1.1}$$

where $t \in [0, 2\pi]$, $u \in \mathbb{R}^n$, $g \in C^k(\mathbb{R})$, $f \in C^1(\mathbb{R}^n)$, $h \in C^1(\mathbb{R} \times \mathbb{R}^n)$ are 2π -periodic in t, α_j , $j = 1, \ldots, k-1$, are constants.

Throughout this paper we use the following assumptions:

- (A1) The Jacobian matrix $h_u = (h_{iu_j})$ is a symmetric matrix, $g \in C^k(\mathfrak{R})$ satisfies $0 < M_1 \le g(t) \le M_2$ on \mathfrak{R} for some constants M_1 and M_2 .
 - (A2) The eigenvalues $\lambda_i(h_u)$, i = 1, ..., n, of h_u satisfy

$$\tau(N_i) + \phi_i(t, ||u||) \le \lambda_i(h_u) \le \omega(N_i + 1) - \varphi_i(t, ||u||)$$

on $\Re \times \Re^n$, and

$$\tau(N_i) = M_2 N_i^{2k} + \sum_{j=1}^{k-1} (-1)^{j-k} \alpha_j N_i^{2j},$$

E-mail addresses: cjh_maths@yahoo.com.cn (J. Chen), donal.oregan@nuigalway.ie (D. O'Regan).

^{*} Corresponding author.

$$\omega(N_i+1) = M_1(N_i+1)^{2k} + \sum_{i=1}^{k-1} (-1)^{j-k} \alpha_j (N_i+1)^{2j}, \quad i=1,\ldots,n,$$

respectively, where N_i are nonnegative integers, $\phi_i(t, s)$ and $\varphi_i(t, s)$, i = 1, ..., n, are continuous functions defined from $[0, 2\pi] \times [0, \infty)$ to $(0, \infty)$, and nonincreasing with respect to s,

$$\int_{0}^{+\infty} \min_{1 \le i \le n, t \in [0, 2\pi]} \{ \phi_i(t, s), \varphi_i(t, s) \} ds = +\infty.$$
 (1.2)

Without loss of generality, it always is assumed that $\tau(N)$, $\omega(N)$ are positive nondecreasing sequences about N, respectively, and $\tau(N_i) < \tau(N_{i+1})$, $\omega(N_i+1) < \omega(N_{i+1}+1)$.

In the one-dimensional case, that is, when n=1, applying the lemma on bilinear forms [12] and the Leray–Schauder principle [2,7,8,16,18], Cong [3] obtained the following result.

Theorem 1.1. Let $h \in C^1(\Re \times \Re)$ with $h(t + 2\pi, u) = h(t, u)$, and $g \in C^k(\Re)$ satisfy $0 < M_1 \le g(t) \le M_2$ on \Re for some constants M_1 and M_2 . Assume that there exist constants a and b, and a nonnegative integer m such that the inequality

$$0 < M_2 m^{2k} + \sum_{i=1}^{k-1} (-1)^{j-k} \alpha_j m^{2j} < a \le h_u(t, u) \le b < M_1 (m+1)^{2k} + \sum_{i=1}^{k-1} (-1)^{j-k} \alpha_j (m+1)^{2j}$$

holds on $\Re \times \Re$ for constants α_j , $j=1,\ldots,k-1$, in (1.1). Then (1.1) has a unique 2π -periodic solution.

For more results on the existence of periodic solutions of (1.1), we refer the reader to [1,2,4,7,9-12,15-17,19,21-24].

In this paper, we establish some new sufficient conditions that have connections with an initial value problem for the existence of a unique 2π -periodic solution of (1.1). These conditions are given in Section 3. The results of [1–3,12,19,22–24] are consequences of this paper.

2. Preliminaries and lemmas

Consider the linear operator $L: \mathcal{D}(L) \to \mathcal{X}$ where

$$Lu = (-1)^k \left(g(t)u^{(k)} \right)^{(k)} + (-1)^k \sum_{j=1}^{k-1} \alpha_j u^{(2j)}$$

and a continuously Fréchet differentiable operator $N: \mathcal{D}(L) \to \mathcal{X}$ which is defined by

$$(N(u))(t) = -h(t, u(t)), \quad t \in [0, 2\pi]. \tag{2.1}$$

Then (1.1) is reformulated as

$$Lu + N(u) = (-1)^k f. (2.2)$$

Let $\mathcal{X} = \mathcal{L}_n^2[0, 2\pi]$ be the set of all vector-valued functions $u(t) = (u_i(t))_{n \times 1}$ on $[0, 2\pi]$ such that $u_i \in \mathcal{L}^2[0, 2\pi]$ for i = 1, ..., n. Then \mathcal{X} is a Hilbert space with the following inner product:

$$\langle u, v \rangle = \int_0^{2\pi} u^T(t)v(t)dt, \tag{2.3}$$

and we denote by $\|\cdot\|$ the norm induced by this inner product. Also

$$\mathcal{D}(L) = \left\{ u(t) = (u_1(t), \dots, u_n(t))^T \mid u^{(i)}(0) = u^{(i)}(2\pi), i = 0, 1, \dots, 2k - 1; \\ u_i^{(2k-1)}(t) \text{ absolutely continuous on } [0, 2\pi] \text{ and } u_i^{(2k)}(t) \in \mathcal{L}^2[0, 2\pi] \right\},$$
(2.4)

Download English Version:

https://daneshyari.com/en/article/843373

Download Persian Version:

https://daneshyari.com/article/843373

<u>Daneshyari.com</u>