Accepted Manuscript

Cholesterol inhibits hepatocellular carcinoma invasion and metastasis by promoting CD44 localization in lipid rafts

Zhishi Yang, Wenhao Qin, Yao Chen, Bo Yuan, Xiaoling Song, Bibo Wang, Feng Shen, Jing Fu, Hongyang Wang

PII: S0304-3835(18)30311-2

DOI: 10.1016/j.canlet.2018.04.038

Reference: CAN 13878

To appear in: Cancer Letters

Received Date: 7 March 2018
Revised Date: 25 April 2018
Accepted Date: 26 April 2018

Please cite this article as: Z. Yang, W. Qin, Y. Chen, B. Yuan, X. Song, B. Wang, F. Shen, J. Fu, H. Wang, Cholesterol inhibits hepatocellular carcinoma invasion and metastasis by promoting CD44 localization in lipid rafts, *Cancer Letters* (2018), doi: 10.1016/j.canlet.2018.04.038.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Abstract

Cholesterol plays a vital role in modulating the action of membrane proteins critical to cellular function. The effect of serum cholesterol on prognosis of hepatocellular carcinoma (HCC) patients is still uncertain. Here, we report that high levels of cholesterol predicts good survival and low disease recurrence after surgery. Cholesterol could significantly suppress migration and invasion of HCC cells, and restrain metastasis of HCC in mice. High levels of cholesterol promoted CD44 translocation into lipid rafts, and attenuated CD44-Ezrin binding, which were crucial for cell migration and cancer metastasis. The suppressive effect of cholesterol on HCC metastasis was abolished by down-regulation of CD44 or its palmitoylation inhibitor, which blocked CD44 localization in lipid rafts. Furthermore, pharmacologically promoting CD44 retention inside lipid rafts obviously attenuated HCC migration and invasion, providing a potential therapeutic strategy to prolong survival of HCC patients.

Download English Version:

https://daneshyari.com/en/article/8434311

Download Persian Version:

https://daneshyari.com/article/8434311

<u>Daneshyari.com</u>