Accepted Manuscript

PA28γ acts as a dual regulator of IL-6 and CCL2 and contributes to tumor angiogenesis in oral squamous cell carcinoma

Sai Liu, Dongjuan Liu, Xin Zeng, Jiongke Wang, Jiajia Liu, Junxin Cheng, Kexin Lei, Hetian Bai, Ning Ji, Min Zhou, Lu Jiang, Hongxia Dan, Jing Li, Qianming Chen

CANCER LETTERS

PII: S0304-3835(18)30291-X

DOI: 10.1016/j.canlet.2018.04.024

Reference: CAN 13864

To appear in: Cancer Letters

Received Date: 6 January 2018
Revised Date: 12 April 2018
Accepted Date: 18 April 2018

Please cite this article as: S. Liu, D. Liu, X. Zeng, J. Wang, J. Liu, J. Cheng, K. Lei, H. Bai, N. Ji, M. Zhou, L. Jiang, H. Dan, J. Li, Q. Chen, PA28γ acts as a dual regulator of IL-6 and CCL2 and contributes to tumor angiogenesis in oral squamous cell carcinoma, *Cancer Letters* (2018), doi: 10.1016/j.canlet.2018.04.024.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Abstract

PA28y promotes tumor development and progression and is suggested to play a role in tumor angiogenesis, but the molecular mechanisms have not been investigated. Here, we found that PA28y enhanced the ability of OSCC cells to promote the migration, invasion, and tube formation of HUVECs and promoted tumor-induced angiogenesis in xenograft mice models in vivo. Then, a mechanism study revealed that the expression and secretion of IL-6 and CCL2 were dependent on PA28y expression. Furthermore, blocking IL-6 or CCL2 or the transcription factor NF-κB induced the inhibition of tube formation in HUVECs co-cultured with PA28y-overexpression OSCC cell supernatants. Moreover, we revealed that p-STAT3 and p-AKT, which are downstream of the IL-6 and CCL2 signaling axis, were downregulated in HUVECs co-cultured with the PA28y-silenced supernatant and were upregulated with the PA28y-overexpressing supernatant. In addition, IL-6, CCL2 and PA28y expressions were correlated in a clinical OSCC cohort. Collectively, our study indicates that PA28y contributes to tumor angiogenesis by regulating IL-6 and CCL2. PA28y may be a novel therapeutic target as a dual regulator of IL-6 and CCL2 for treating PA28γ-positive OSCC.

Download English Version:

https://daneshyari.com/en/article/8434400

Download Persian Version:

https://daneshyari.com/article/8434400

<u>Daneshyari.com</u>