

Available online at www.sciencedirect.com

Nonlinear Analysis 67 (2007) 842-864

www.elsevier.com/locate/na

Existence and asymptotic expansion for a viscoelastic problem with a mixed nonhomogeneous condition

Nguyen Thanh Long a,*, Le Xuan Truong b

Received 8 April 2006; accepted 9 June 2006

Abstract

We study the initial-boundary value problem for a nonlinear wave equation given by

$$\begin{cases} u_{tt} - u_{xx} + \int_0^t k(t - s)u_{xx}(s)ds + K|u|^{p-2}u + \lambda|u_t|^{q-2}u_t = f(x, t), & 0 < x < 1, 0 < t < T, \\ u_x(0, t) = u(0, t), & u_x(1, t) + \eta u(1, t) = g(t), \\ u(x, 0) = \widetilde{u}_0(x), & u_t(x, 0) = \widetilde{u}_1(x), \end{cases}$$
(1)

where $\eta \geq 0$; $p \geq 2$, $q \geq 2$; K, λ are given constants and \widetilde{u}_0 , \widetilde{u}_1 , f, g, k are given functions. In this paper, we consider three main parts. In Part 1 we prove a theorem of existence and uniqueness of a weak solution u of problem (1). The proof is based on a Faedo–Galerkin method associated with a priori estimates, weak convergence and compactness techniques. Part 2 is devoted to the study of the asymptotic behavior of the solution u as $\eta \to 0_+$. Finally, in Part 3 we obtain an asymptotic expansion of the solution u of the problem (1) up to order N+1 in three small parameters K, λ , η .

MSC: 35L20; 35L70

Keywords: Faedo-Galerkin method; Existence and uniqueness of a weak solution; Energy-type estimates; Compactness; Asymptotic expansion

1. Introduction

In this paper we will consider the following initial and boundary value problem:

$$u_{tt} - u_{xx} + \int_0^t k(t - s)u_{xx}(s)ds + F(u, u_t) = f(x, t), \quad 0 < x < 1, 0 < t < T,$$
(1.1)

$$u_x(0,t) = \eta_0 u(0,t), \qquad u_x(1,t) + \eta u(1,t) = g(t),$$
 (1.2)

$$u(x,0) = \widetilde{u}_0(x), \qquad u_t(x,0) = \widetilde{u}_1(x),$$
 (1.3)

E-mail addresses: longnt@hcmc.netnam.vn, longnt2@gmail.com (N.T. Long), truong@math.net (L.X. Truong).

^a Department of Mathematics and Computer Science, University of Natural Science, Vietnam National University HoChiMinh City, 227 Nguyen Van Cu Street, Dist.5, HoChiMinh City, Viet Nam

^b Department of Mathematics, Faculty of General Science, University of Technical Education in HoChiMinh City, 01 Vo Van Ngan Street, Thu Duc Dist., HoChiMinh City, Viet Nam

^{*} Corresponding author.

where $F(u, u_t) = K|u|^{p-2}u + \lambda |u_t|^{q-2}u_t$, with $\eta \ge 0$, $\eta_0 > 0$; $p \ge 2$, $q \ge 2$; K, λ are given constants and \widetilde{u}_0 , \widetilde{u}_1 , f, g, k are given functions satisfying conditions specified later.

In a recent paper, [1], Berrimia and Messaoudi considered the problem

$$u_{tt} - \Delta u + \int_0^t k(t - s) \Delta u(s) ds = |u|^{p-2} u, \quad x \in \Omega, t > 0,$$
(1.4)

$$u = 0$$
, on $\partial \Omega$, (1.5)

$$u(x,0) = \widetilde{u}_0(x), \qquad u_t(x,0) = \widetilde{u}_1(x), \quad x \in \Omega,$$
 (1.6)

where p>2 is a constant, k is a given positive function, and Ω is a bounded domain of \mathbb{R}^n $(n \geq 1)$, with a smooth boundary $\partial \Omega$. This type of problems have been considered by many authors and several results concerning existence, nonexistence, and asymptotic behavior have been established. In this regard, Cavalcanti et al. [3] studied the following equation

$$u_{tt} - \Delta u + \int_0^t k(t - s) \Delta u(s) ds + |u|^{p-2} u + a(s) u_t = 0, \quad \text{in } \Omega \times (0, \infty),$$
 (1.7)

for $a: \Omega \to \mathbb{R}_+$, a function, which may be null on a part of the domain Ω . Under the conditions that $a(x) \ge a_0 > 0$ on $\omega \subset \Omega$, with ω satisfying some geometry restrictions and

$$-\zeta_1 k(t) \le k^{/}(t) \le -\zeta_2 k(t), \quad t \ge 0, \tag{1.8}$$

the authors established an exponential rate of decay.

In [5,6], Long and Alain Pham have studied problem (1.1) and (1.3) with $k \equiv 0$, f(x, t) = 0.

In [5], we have considered it with the mixed nonhomogeneous condition

$$u_x(0,t) = hu(0,t) + g(t), \quad u(1,t) = 0,$$
 (1.9)

where h > 0 is a given constant; in [6] with the more generalized boundary condition

$$u_X(0,t) = g(t) + hu(0,t) - \int_0^t H(t-s)u(0,s)ds, \quad u(1,t) = 0.$$
(1.10)

In [7], Long and Diem have studied problem (1.1) and (1.3) with $k \equiv 0$, and the mixed homogeneous condition

$$u_x(0,t) - h_0 u(0,t) = u_x(1,t) + h_1 u(1,t) = 0, (1.11)$$

where h_0 , h_1 are given non-negative constants with $h_0 + h_1 > 0$ and a right-hand side of the form

$$F = F(x, t, u, u_x, u_t). (1.12)$$

In [2] Bergounioux et al. studied problem (1.1) and (1.3) with $k \equiv 0$, $F(u, u_t) = Ku + \lambda u_t$, and the mixed boundary conditions (1.2) standing for

$$u_X(0,t) = g(t) + hu(0,t) - \int_0^t H(t-s)u(0,s)ds,$$
(1.13)

$$u_{x}(1,t) + K_{1}u(1,t) + \lambda_{1}u_{t}(1,t) = 0, \tag{1.14}$$

where $h \ge 0$, K, λ , K_1 , λ_1 are given constants and g, H are given functions.

In [9], Long et al. obtained the unique existence, regularity and asymptotic expansion of the problem (1.1), (1.3), (1.13) and (1.14) in the case of $k \equiv 0$, $F(u, u_t) = K|u|^{p-2}u + \lambda|u_t|^{q-2}u_t$, with $p \ge 2$, $q \ge 2$; K, λ are given constants.

In [10], Long et al. gave the unique existence, stability, regularity in time variable and asymptotic expansion for the solution of problem (1.1)–(1.3) when $F(u, u_t) = Ku + \lambda u_t$, $\widetilde{u}_0 \in H^2$ and $\widetilde{u}_1 \in H^1$. In this case, the problem (1.1)–(1.3) is the mathematical model describing a shock problem involving a linear viscoelastic bar.

In this paper, we consider three main parts. In Part 1, under conditions $(\widetilde{u}_0, \widetilde{u}_1) \in H^2 \times H^1$; $f, f_t \in L^2(Q_T)$, $k \in W^{2,1}(0,T), g \in H^2(0,T)$; $K, \lambda, \eta \geq 0, \eta_0 > 0$; $p, q \geq 2$, we prove a theorem of existence and uniqueness

Download English Version:

https://daneshyari.com/en/article/843442

Download Persian Version:

https://daneshyari.com/article/843442

<u>Daneshyari.com</u>