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Abstract

Let T be a time scale with t1, t2, t3 ∈ T. We investigate the existence of solutions to the nonlinear even-order three-point
boundary value problem

(−1)n y∆2n
(t) = f (t, y(σ (t))), t ∈ [t1, t3] ⊂ T,

y∆2i+1
(t1) = 0, αy∆2i

(σ (t3))+ βy∆2i+1
(σ (t3)) = y∆2i+1

(t2), 0 ≤ i ≤ n − 1,

where n ∈ N, t2 ∈ (t1, σ (t3)), α > 0 and β > 1 are given constants.
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1. Introduction

We are interested in the even-order three-point boundary value problem (TPBVP){
(−1)n y∆2n

(t) = f (t, y(σ (t))), t ∈ [t1, t3] ⊂ T, n ∈ N
y∆2i+1

(t1) = 0, αy∆2i
(σ (t3))+ βy∆2i+1

(σ (t3)) = y∆2i+1
(t2),

(1.1)

for 0 ≤ i ≤ n−1, where α > 0 and β > 1 are given constants. We assume that f : [t1, σ (t3)]×R→ R is continuous
and that σ(t3) is right dense so that σ j (t3) = σ(t3) for j ≥ 1. Throughout this paper we suppose that T is any time
scale and [t1, t3] is a subset of T such that [t1, t3] = {t ∈ T : t1 ≤ t ≤ t3}.

The study of dynamic equations on time scales goes back to its founder Stefan Hilger [9]. For the background
and results concerning dynamic equations on time scales, see the excellent text by Bohner and Peterson [5] and their
edited text [6].

In recent years, many authors have studied second-order three-point boundary value problems for dynamic
equations on time scales. We refer the reader to [1,2,7,11,12,14] for some recent results.
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Anderson and Avery [3] were interested in the following even-order TPBVP,{
(−1)n x (∆∇)

n
(t) = λh(t) f (x(t)), t ∈ [a, c] ⊂ T, n ∈ N

x (∆∇)
i
(a) = 0, x (∆∇)

i
(c) = βx (∆∇)

i
(b), 0 ≤ i ≤ n − 1.

(1.2)

They have studied the existence of at least one positive solution to TPBVP (1.2) using the functional-type cone
expansion–compression fixed point theorem.

Sang and Su [13] are concerned with the existence of at least one nontrivial solution of the following higher-order
TPBVP on time scales

u∆n
(t)+ f (t, u(t)) = 0, t ∈ (0, T ),

u(0) = αu(η), u(T ) = βu(η),

u∆i
(0) = 0 for i = 1, 2, . . . , n − 2.

We have arranged the paper as follows. In Section 2, we construct the Green’s function for the TPBVP (1.1).
In Section 3, we establish criteria for the existence of at least one solution and of at least one positive solution for
the TPBVP (1.1) by using Schauder fixed point theorem and Krassnoselskii’s fixed point theorem, respectively. In
Section 4, we investigate the existence of multiple positive solutions to the TPBVP (1.1) by using Avery–Henderson
fixed point theorem and Legget–Williams fixed point theorem. As an application, to demonstrate our results we also
give an example.

2. Preliminaries

Let G(t, s) be Green’s function for the boundary value problem

−y∆2
(t) = 0, t ∈ [t1, t3],

y∆(t1) = 0, αy(σ (t3))+ βy∆(σ (t3)) = y∆(t2).

A direct calculation gives

G(t, s) =

{
H(t, s), t1 ≤ s ≤ t2,
K (t, s), t2 < s ≤ t3,

(2.1)

where

H(t, s) =


σ(t3)− t +

β − 1
α

, σ (s) ≤ t,

σ (t3)− σ(s)+
β − 1
α

, t ≤ s,

and

K (t, s) =


σ(t3)− t +

β

α
, σ (s) ≤ t,

σ (t3)− σ(s)+
β

α
, t ≤ s.

To state and prove the main results of this paper, we need the following lemmas.

Lemma 1. Let α > 0, β > 1. Then the Green’s function G(t, s) in (2.1) satisfies the following inequality

G(t, s) ≥
t − t1

σ(t3)− t1
G(σ (t3), s)

for (t, s) ∈ [t1, σ (t3)] × [t1, t3].

Proof. We proceed sequentially on the branches of the Green’s function G(t, s) in (2.1).
(i) For s ∈ [t1, t2] and σ(s) ≤ t , we obtain

G(t, s) = σ(t3)− t +
β − 1
α
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