
Nonlinear Analysis 70 (2009) 3584–3602

Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Primal–dual interior-point algorithms for second-order cone
optimization based on kernel functionsI

Y.Q. Bai a,∗, G.Q. Wang a, C. Roos b
a Department of Mathematics, Shanghai University, Shanghai, 200444, China
b Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands

a r t i c l e i n f o

Article history:
Received 25 December 2007
Accepted 29 July 2008

MSC:
60K05
90C51

Keywords:
Second-order cone optimization
Interior-point methods
Primal–dual method
Large- and small-update methods
Polynomial complexity

a b s t r a c t

We present primal–dual interior-point algorithms for second-order cone optimization
based on a wide variety of kernel functions. This class of kernel functions has been
investigated earlier for the case of linear optimization. In this paper we derive the
iteration boundsO(

√
N logN) log N

ε
for large- andO(

√
N) log N

ε
for small-updatemethods,

respectively. HereN denotes the number of second-order cones in the problem formulation
and ε the desired accuracy. These iteration bounds are currently the best known bounds
for such methods. Numerical results show that the algorithms are efficient.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Second-order cone optimization (SOCO) problems are convex optimization problems because their objective is a linear
function and their feasible set is the intersection of an affine space with the Cartesian product of a finite number of second-
order (also called Lorentz or ice-cream) cones. The second-order cone in Rn is given by

Ln :=

{
(x1, x2, . . . , xn) ∈ Rn : x21 ≥

n∑
i=2

x2i , x1 ≥ 0

}
, (1)

where n is some natural number. A SOCO problem is a problem of the form

(P) min
{
cTx : Ax = b, x ∈ K

}
,

and the dual problem of (P) is given by

(D) max
{
bTy : ATy+ s = c, s ∈ K

}
,

whereK ⊆ Rn is the Cartesian product of several second-order cones, i.e.,

K = K1
×K2

· · · ×KN , (2)
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withK j
= Lnj for each j, and n =

∑N
j=1 nj. Furthermore, we partition the vectors x, s, c , and the matrix A accordingly as

x = (x1; x2; . . . ; xN), s = (s1; s2; . . . ; sN) with xj, sj ∈ K j, c = (c1; c2; . . . ; cN) with c j ∈ Rnj , and A = (A1, A2, . . . , AN)
with Aj ∈ Rm×nj , and b ∈ Rm. Without loss of generality, throughout the paper we assume that the matrix A has full rank,
(i.e., rank (A) = m). As a consequence, if the pair (y, s) is dual feasible then y is uniquely determined by s. Therefore, we will
feel free to say that s is dual feasible, without mentioning y.
It is well-known that SOCO problems include linear and convex quadratic programs as special cases. On the other hand,

SOCOproblems are special cases of semidefinite optimization (SDO) problems, andhence canbe solvedbyusing an algorithm
for SDO problems. Interior-point methods (IPMs) that exploit the special structure of SOCO problems, however, have much
better complexity than when using an IPM for SDO for solving SOCO problems.
In the last few years the SOCO problems have received considerable attention from researchers because of its wide range

of applications (see, e.g., [10,27]) and because of the existence of efficient IPM algorithms (see, e.g., [2,3,23,22,24,25]). Several
IPMs designed for LO (see e.g., [20]) have been successfully extended to SOCO. Important work in this direction was done
by Nesterov and Todd [13,14] who showed that the primal–dual algorithm maintains its theoretical efficiency when the
nonnegativity constraints in LO are replaced by a convex cone, as long as the cone is homogeneous and self-dual. Adler
and Alizadeh [1] studied a unified primal–dual approach for SDO and SOCO, and proposed a search direction for SOCO
analogous to the AHO-direction for SDO. Later, Schmieta and Alizadeh [21] presented a way to transfer the Jordan algebra
associatedwith the second-order cone into the so-calledClifford algebra in the coneofmatrices and then carried out a unified
analysis of the analysis for many IPMs in symmetric cones. Faybusovich [7], using Jordan algebraic techniques, analyzed the
Nesterov–Todd method for SOCO. Monteiro [12] and Tsuchiya [25] applied Jordan algebra to the analysis of IPMs for SOCO
with specialization to various search directions. Other researchers have worked on IPMs for special cases of SOCO, such as
convex quadratic programming, minimizing a sum of norms, etc. For an overview of these results we refer to [27] and its
related references.
Recently, Peng et al. [18] designed primal–dual interior-point algorithms for LO, SDO and SOCO based on so-called self-

regular (SR) proximity functions. They improved the iteration bound for SOCOwith large-update methods and achieved the
currently best bound for suchmethods. Their workwas extended to other proximity functions based on univariate so-called
kernel functions. This was done for a wide class of kernel functions in [4] for LO and for one specific kernel in [26] for SDO.
Motivated by these results, in this paper we present a primal–dual IPM for SOCO problems based on kernel functions.

We call a univariate ψ : (0,∞)→ [0,∞) a kernel function if it satisfies

ψ ′(1) = ψ(1) = 0, (3a)

ψ ′′(t) > 0, (3b)

lim
t→0

ψ(t) = lim
t→∞

ψ(t) = ∞. (3c)

Note that this implies that ψ(t) is strictly convex and minimal at t = 1, with ψ(1) = 0. Moreover, (3c) expresses that
ψ(t) has the barrier property. Also note that ψ(t) is completely determined by its second derivative, because the above
properties imply that

ψ(t) =
∫ t

1

∫ ξ

1
ψ ′′(ζ ) dζdξ . (4)

Similarly as in [4] for LO, we show in this paper that every kernel function ψ(t) gives rise to an IPM for SOCO. We borrow
several tools for the analysis of the resulting IPM for SOCO from [4], and some of them from [18]. These analytic tools reveal
that the iteration bound highly depends on the choice ofψ(t), especially on the inverse functions ofψ(t) and its derivatives.
Our aim will be to investigate the dependence of the iteration bound on the underlying kernel function. We will consider
both large- and small-update methods.
The outline of the paper is as follows. In Section 2, after briefly recalling some relevant properties of the second-order cone

and its associated Euclidean Jordan algebra, we review some basic concepts for IPMs for solving the SOCO problem, such as
central path, NT-search direction, etc. We conclude this section by presenting a generic primal–dual IPM for SOCO based on
a kernel function. In Section 3 we introduce the notion of an eligible kernel function and review its relevant properties. We
define the related vector-valued barrier function and the corresponding real-valued barrier function. Then, in Section 3.2, we
derive a crucial inequality, related to the decrease of the barrier function value during an inner iteration of the algorithm. At
this stage the analysis in essence boils down to the same analysis thatwas used in [4] for IPMS for LO. Borrowingmany results
from [4] we complete the analysis of the IPM for SOCO and obtain a generic iteration bound that is completely expressed
in terms of the underlying kernel function and two parameters of the algorithm. We conclude this section by applying the
iteration bound to a wide variety of kernel functions. Numerical results are described in Section 4. Finally, some concluding
remarks follow in Section 5.
Some notations used throughout the paper are as follows. Rn, Rn

+
and Rn

++
denote the set of all vectors (with n

components), the set of nonnegative vectors and the set of positive vectors, respectively. As usual, ‖·‖ denotes the Frobenius
norm for matrices, and the 2-norm for vectors; this norm is never understood in the algebraic sense (as a square root of sum
of squared eigenvalues). The Löwner partial ordering ‘‘�K ’’ of Rn defined by a coneK is defined by x�K s if x− s ∈ K . The
interior ofK is denoted asK+ and we write x�K s if x− s ∈ K+. Finally, En denotes the n× n identity matrix.
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