Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/na)

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Existence of multiple solutions for weighted *p*(*r*)-Laplacian equation Dirichlet problems[☆]

Qihu Zhang ^{[a,](#page-0-1)[b,](#page-0-2)}*, Zhimei Qiu ^{[b](#page-0-2)}, Xiaopin Liu ^b

^a *Department of Mathematics and Information Science, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, PR China* b *School of Mathematical Science, Xuzhou Normal University, Xuzhou, Jiangsu 221116, PR China*

a r t i c l e i n f o

Article history: Received 31 March 2008 Accepted 29 July 2008

MSC: 34B10 34B15

Keywords: Weighted *p*(*r*)-Laplacian Sub-super-solution Fixed point

1. Introduction

a b s t r a c t

This paper deals with the existence of multiple solutions for weighted $p(r)$ -Laplacian equation Dirichlet problems. Several sub-super-solution type results have been given via Leray–Schauder's degree method. In particular, we give a counterexample which means that \varOmega_{α_2} in paper [J. Henderson, H.B. Thompson, Existence of multiple solutions for second order boundary value problems, J. Differential Equations 166 (2000) 443–454] is not an open subset of C_0^1 .

© 2008 Elsevier Ltd. All rights reserved.

In this paper, we consider the existence of solutions for the following weighted *p*(*r*)-Laplacian ordinary equation Dirichlet problem via Leray–Schauder's degree method

$$
-(w(r) |u'|^{p(r)-2} u')' + f(r, u, (w(r))^\frac{1}{p(r)-1} u') = 0, \quad r \in (T_1, T_2),
$$
\n(1)

$$
u(T_1) = 0 = u(T_2), \tag{2}
$$

where $p, w \in C([T_1, T_2], \mathbb{R})$, $p(r) > 1$, $0 < w(r)$ for any $r \in (T_1, T_2)$ and $[w(r)]^{\frac{-1}{p(r)-1}} \in L^1(T_1, T_2)$, $-\triangle_{p(r)} \cong$ $-(w(r) |u'|^{p(r)-2} u')'$ is called weighted *p*(*r*)-Laplacian.

 The study of differential equations and variational problems with nonstandard *p*(*r*)-growth conditions is a new and interesting topic. For the background about these problems, we refer to [\[3,](#page--1-0)[17](#page--1-1)[,23\]](#page--1-2). Many results have been obtained on this kinds of problem, for example [\[6–9](#page--1-3)[,11,](#page--1-4)[13](#page--1-5)[,15,](#page--1-6)[17–23\]](#page--1-1). If $p(r) \equiv p$ (a constant), [\(1\)](#page-0-4) is the well known *p*-Laplacian problem. There are many sub-super-solution type results on the existence of solutions for *p*-Laplacian problems (see [\[1,](#page--1-7)[2,](#page--1-8)[4](#page--1-9)[,12,](#page--1-10)[16\]](#page--1-11)). Because of the nonhomogeneity of $p(x)$ -Laplacian, $p(x)$ -Laplacian problems are more complicated than those of *p*-Laplacian, many methods and results for *p*-Laplacian problems are invalid for *p*(*x*)-Laplacian problems; for example:

 $\frac{\dot{\pi}}{2}$ Foundation item: Partly supported by the National Science Foundation of China (10701066 & 10671084) and China Postdoctoral Science Foundation (20070421107) and the Natural Science Foundation of Henan Education Committee (2007110037).

[∗] Corresponding author at: Department of Mathematics and Information Science, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, PR China.

E-mail address: zhangqh1999@yahoo.com.cn (Q. Zhang).

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter © 2008 Elsevier Ltd. All rights reserved. [doi:10.1016/j.na.2008.07.028](http://dx.doi.org/10.1016/j.na.2008.07.028)

(i) If $\Omega \subset \mathbb{R}^n$ is a bounded domain, the Rayleigh quotient

$$
\lambda_{p(x)} = \inf_{u \in W_0^{1,p(x)}(\Omega) \setminus \{0\}} \frac{\int_{\Omega} \frac{1}{p(x)} |\nabla u|^{p(x)} dx}{\int_{\Omega} \frac{1}{p(x)} |u|^{p(x)} dx}
$$

is zero in general, and only under some special conditions $\lambda_{p(x)} > 0$ (see [\[9\]](#page--1-12)), but the fact that $\lambda_p > 0$ is very important in the study of *p*-Laplacian problems.

(ii) If $w(r) \equiv p(r) \equiv p$ (a constant) and $-\Delta_p u > 0$, then *u* is concave, this property is used extensively in the study of one dimensional p -Laplacian problems, but it is invalid for $-\triangle_{p(r)}.$ This is another difference on $-\triangle_p$ and $-\triangle_{p(r)}.$

Regarding the existence of multiple solutions for $p(x)$ -Laplacian equations via critical point theory, we refer to [\[8\]](#page--1-13). For the existence of solutions for *p*(*x*)-Laplacian equations Dirichlet problems via Leray–Schauder degree method or sub-supersolution method, we refer to [\[20–22\]](#page--1-14). This paper deals with the existence of multiple solutions for weighted *p*(*r*)-Laplacian equation Dirichlet problems, several sub-super-solution type results have been given via Leray–Schauder degree method. This paper is motivated by [\[10](#page--1-15)[,14,](#page--1-16)[20\]](#page--1-14).

Let $T_1 < T_2$ and $I = [T_1, T_2]$, the function $f: I \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is assumed to be Caratheodory, by this we mean:

- (i) for almost every $t \in I$ the function $f(t, \cdot, \cdot)$ is continuous;
- (ii) for each $(x, y) \in \mathbb{R} \times \mathbb{R}$ the function $f(\cdot, x, y)$ is measurable on *I*;
- (iii) for each $R > 0$ there exists a $\rho_R \in L^1(I,\R)$ such that, for almost every $t \in I$ and every $(x,y) \in \R \times \R$ with $|x| \le R$, $|y| \leq R$, one has

$$
|f(t,x,y)|\leq \rho_R(t).
$$

We set $C = C(I, \mathbb{R})$, $C^1 = \{u \in C \mid u' \in C((T_1, T_2), \mathbb{R})$, $\lim_{r \to T_1^+} w(r) |u'|$ $\int_0^{\frac{p(r)-2}{\pi}} u'(r)$ and $\lim_{r\to\frac{r}{2}} w(r) |u'|$ *p*^{(*r*)−2}*u***^{** \prime **}(***r***)** exist}, $C_0^1 = \{u \in C^1 \mid u(T_1) = 0 = u(T_2)\}\)$. Denote $||u||_0 = \sup_{r \in (T_1, T_2)} |u(r)|$ and $||u||_1 = ||u||_0 + ||(w(r))^{\frac{1}{p(r)-1}}u'||_0$.

The spaces C and C^1 will be equipped with the norm $\|\cdot\|_0$ and $\|\cdot\|_1$, respectively. Then C,C^1 and C_0^1 are Banach spaces. Throughout the paper, we denote

$$
w(T_1) |u'|^{p(T_1)-2} u'(T_1) = \lim_{r \to T_1^+} w(r) |u'|^{p(r)-2} u'(r),
$$

$$
w(T_2) |u'|^{p(T_2)-2} u'(T_2) = \lim_{r \to T_2^-} w(r) |u'|^{p(r)-2} u'(r).
$$

We say a function $u: I \to \mathbb{R}$ is a solution of [\(1\)](#page-0-4) with [\(2\),](#page-0-5) if $u \in C_0^1$ and $w(r) |u'|$ *p*^{(*r*)−2} *u'*(*r*) is absolutely continuous and satisfies [\(1\)](#page-0-4) *a*.*e*. on *I*.

Functions $\alpha, \beta \in C^1$ are called subsolution and supersolution of [\(1\)](#page-0-4) respectively, if $w(r) |\alpha'|$ $p(r)-2 \alpha'(r)$ and $w(r)$ $\left|\beta'\right|$ *p*⁽*r*)−2 β '(*r*) are absolutely continuous and satisfy

$$
-(w(r) |\alpha'|^{p(r)-2} \alpha'(r))' + f(r, \alpha, (w(r))^{\frac{1}{p(r)-1}} \alpha') \le 0, \quad \text{a.e. on } I,
$$

$$
-(w(r) |\beta'|^{p(r)-2} \beta'(r))' + f(r, \beta, (w(r))^{\frac{1}{p(r)-1}} \beta') \ge 0, \quad \text{a.e. on } I.
$$

Throughout the paper, we assume that $\alpha_1 \leq \beta_2$ are subsolution and supersolution, respectively. Denote

$$
\Omega_0 = \{ (t, x) \mid t \in I, x \in [\alpha_1(t), \beta_2(t)] \},
$$

$$
\Omega_1 = \{ (t, x, y) \mid t \in I, x \in [\alpha_1(t), \beta_2(t)], y \in \mathbb{R} \}.
$$

We also assume *f* satisfies the following conditions on Ω_0 and Ω_1 ,

 (H_1) $|f(t, x, y)| \leq A_1(t, x)K_1(t, x, y) + A_2(t, x)K_2(t, x, y)$ for all $(t, x, y) \in \Omega_1$, where $A_i(t, x)$ $(i = 1, 2)$ are positive valued and continuous on Ω_0 , $K_i(t, x, y)$ ($i = 1, 2$) are positive valued and continuous on Ω_1 .

 $(H₂)$ There exist positive numbers $M₁$ and $M₂$ such that

$$
K_1(t, x, y) \le |y| h(|y|), K_2(t, x, y) \le M_1 h(|y|), \quad \forall |y| \ge M_2,
$$

where $h \in C([1,+\infty), [1,+\infty))$ is increasing and satisfies $\int_1^{+\infty} \frac{1}{\sqrt{1-\frac{1}{n}}}$ $h((y)$ ^{$\frac{1}{p^{-}-1}$} $dy = \infty$, where $p^{-} = \min_{r \in I} p(r)$.

Our main results are as following

Theorem 1.1. *If f is Caratheodory and satisfies* (H₁) *and* (H₂) *on* Ω_0 *and* Ω_1 , α_1 *and* α_2 *are subsolutions,* β_1 *and* β_2 *are supersolutions, which satisfy*

(i)
$$
\alpha_i(T_j) \leq 0 \leq \beta_i(T_j)
$$
, $i = 1, 2, j = 1, 2$,

Download English Version:

<https://daneshyari.com/en/article/843530>

Download Persian Version:

<https://daneshyari.com/article/843530>

[Daneshyari.com](https://daneshyari.com)