

Available online at www.sciencedirect.com







www.elsevier.com/locate/na

# Classification of Hamiltonian-stationary Lagrangian submanifolds of constant curvature in $\mathbb{CP}^3$ with positive relative nullity $^{\star}$

Bang-Yen Chen<sup>a,\*</sup>, Oscar J. Garay<sup>b</sup>

<sup>a</sup> Department of Mathematics, Michigan State University, East Lansing, MI 48824–1027, USA <sup>b</sup> Departamento de Matematicas, Facultad de Ciencias, Universidad del Pais Vasco, Apartado 644, Bilbao 48080, Spain

Received 26 April 2007; accepted 15 June 2007

#### **Abstract**

A Lagrangian submanifold in a Kaehler manifold is said to be Hamiltonian-stationary if it is a critical point of the area functional restricted to (compactly supported) Hamiltonian variations. In this paper we classify Hamiltonian-stationary Lagrangian submanifolds of constant curvature in  $\mathbb{C}P^3$  with positive relative nullity. As an immediate by-product, several explicit new families of Hamiltonian-stationary Lagrangian submanifolds in  $\mathbb{C}P^3$  are obtained. © 2007 Elsevier Ltd. All rights reserved.

MSC: primary 53D12; secondary 53C40; 53C42

Keywords: Hamiltonian-stationary; H-stationary; Lorentzian complex space form; Lagrangian surfaces; Twisted product decompositions

#### 1. Introduction

Let  $\tilde{M}^n(4\tilde{c})$  denote a complex n-dimensional complex space of constant holomorphic sectional curvature  $4\tilde{c}$ . Let J be the complex structure and the Kaehler metric  $\langle \ , \ \rangle$  of  $\tilde{M}^n(4\tilde{c})$ . The Kaehler 2-form  $\omega$  is defined by  $\omega(\cdot \ , \cdot) = \langle J \cdot , \cdot \rangle$ . An immersion  $\psi: M \to \tilde{M}^n(4\tilde{c})$  of an n-manifold M into  $\tilde{M}^n(4\tilde{c})$  is called Lagrangian if  $\psi^*\omega = 0$  on M. A vector field X on  $\tilde{M}^n(4\tilde{c})$  is called Hamiltonian if  $\mathcal{L}_X\omega = f\omega$  for some function  $f \in C^\infty(\tilde{M}^n(4\tilde{c}))$ , where  $\mathcal{L}$  is the Lie derivative. Thus, there exists a smooth real-valued function  $\varphi$  on  $\tilde{M}^n(4\tilde{c})$  such that  $X = J\tilde{\nabla}\varphi$ , where  $\tilde{\nabla}$  is the gradient in  $\tilde{M}^n(4\tilde{c})$ . The diffeomorphisms of the flux  $\psi_t$  of X satisfy  $\psi_t\omega = \mathrm{e}^{h_t}\omega$ . Thus they transform Lagrangian submanifolds into Lagrangian submanifolds.

Oh [16] studied the following variational problem: a normal vector field  $\xi$  to a Lagrangian immersion  $\psi: M^n \to \tilde{M}^n(4\tilde{c})$  is called Hamiltonian if  $\xi = J\nabla f$ , where f is a smooth function on  $M^n$  and  $\nabla f$  is the gradient of f with respect to the induced metric.

If  $f \in C_0^{\infty}(M)$  and  $\psi_t : M \to \tilde{M}^n(4\tilde{c})$  is a variation of  $\psi$  with  $\psi_0 = \psi$  and variational vector field  $\xi$ , then the first variation of the volume functional is

$$\frac{\mathrm{d}}{\mathrm{d}t}_{|_{t=0}} \operatorname{vol}(M, \psi_t^* g) = -\int_M (f \operatorname{div} J H) \mathrm{d}v_M,$$

E-mail addresses: bychen@math.msu.edu (B.-Y. Chen), oscar.garay@ehu.es (O.J. Garay).

<sup>&</sup>lt;sup>☆</sup> This work is partially supported by a MEC grant No MTM 2004-04934-C34-03.

<sup>\*</sup> Corresponding author. Tel.: +1 5173534670; fax: +1 5174321532.

where H is the mean curvature vector of the immersion  $\psi$  and div is the divergence operator on M. Critical points of this variational functional are called Hamiltonian-stationary (or simply H-stationary). Lagrangian submanifolds with parallel mean curvature vector are always H-stationary. Among others, H-stationary Lagrangian submanifolds in complex space forms have been studied in [1-5,7,8,13-16].

The motivations for studying H-stationary Lagrangian submanifolds were due to their interesting geometric properties and the similarities to some models in incompressible elasticity.

Let h denote the second fundamental form of Lagrangian submanifold M of  $\tilde{M}^n(4c)$ . At a given point  $p \in M$ , the relative null space  $\mathcal{N}_p$  at p is the subspace of the tangent space  $T_pM$  defined by

$$\mathcal{N}_p = \{ X \in T_p M : h(X, Y) = 0 \,\forall Y \in T_p M \}.$$

The dimension of  $\mathcal{N}_p$  is called the *relative nullity* at p.

In this article, we completely classify the family of H-stationary Lagrangian submanifolds of constant sectional curvature in  $\mathbb{C}P^3$  with positive relative nullity. More precisely, we prove that there exist five families of H-stationary Lagrangian submanifolds of constant curvature in  $\mathbb{C}P^3$  with positive relative nullity. Conversely, every H-stationary Lagrangian submanifold of constant curvature in  $\mathbb{C}P^3$  with positive relative nullity is locally congruent to an open portion of a Lagrangian submanifold given by the five families.

#### 2. Preliminaries

#### 2.1. Basic notation and formulas

Let  $f: M \to \tilde{M}^n(4\tilde{c})$  be a Lagrangian immersion of a Riemannian *n*-manifold M into  $M^n(4\tilde{c})$ . Denote the Riemannian connections of M and  $M^n(4\tilde{c})$  by  $\nabla$  and  $\tilde{\nabla}$ , respectively; and by D the connection on the normal bundle of the submanifold.

The formulas of Gauss and Weingarten are (cf. [6])

$$\tilde{\nabla}_X Y = \nabla_X Y + h(X, Y), \tag{2.1}$$

$$\tilde{\nabla}_X \xi = -A_{\xi} X + D_X \xi \tag{2.2}$$

for tangent vector fields X, Y and normal vector field  $\xi$ . If we denote the Riemann curvature tensor of  $\nabla$  by R, then the equations of Gauss and Codazzi are given respectively by

$$\langle R(X,Y)Z,W\rangle = \langle h(X,W),h(Y,Z)\rangle - \langle h(X,Z),h(Y,W)\rangle + \tilde{c}\{\langle X,W\rangle\langle Y,Z\rangle - \langle X,Z\rangle\langle Y,W\rangle\}, \tag{2.3}$$

$$(\nabla h)(X, Y, Z) = (\nabla h)(Y, X, Z), \tag{2.4}$$

where  $(\nabla h)(X, Y, Z) = D_X h(Y, Z) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z)$ .

For a Lagrangian submanifold M of  $\mathbb{C}^n$ , we have (cf. [11])

$$D_X J Y = J \nabla_X Y, \tag{2.5}$$

$$\langle h(X,Y), JZ \rangle = \langle h(Y,Z), JX \rangle = \langle h(Z,X), JY \rangle. \tag{2.6}$$

### 2.2. Lagrangian and Legendrian submanifolds

We recall a basic relationship between Legendrian submanifolds of  $S^{2n+1}(1)$  and Lagrangian submanifolds of the complex projective *n*-space  $\mathbb{C}P^n$  with constant holomorphic curvature 4 (cf. [17]).

Let

$$S^{2n+1}(1) = \{(z_1, \dots, z_{n+1}) \in \mathbf{C}^{n+1} : \langle z, z \rangle = 1\}$$

be the unit hypersphere in  $\mathbb{C}^{n+1}$  centered at the origin. On  $\mathbb{C}^{n+1}$  we consider the complex structure J induced by  $i = \sqrt{-1}$ . On  $S^{2n+1}(1)$  we consider the canonical Sasakian structure consisting of  $\phi$  given by the projection of the complex structure J of  $\mathbb{C}^{n+1}$  on the tangent bundle of  $S^{2n+1}(1)$  and the structure vector field  $\xi = Jx$  with x being the position vector.

An isometric immersion  $f: M \to S^{2n+1}(1)$  is called *Legendrian* if  $\xi$  is normal to  $f_*(TM)$  and  $\langle \phi(f_*(TM)), f_*(TM) \rangle = 0$ , where  $\langle , \rangle$  denotes the inner product on  $\mathbb{C}^{n+1}$ . The vectors of  $S^{2n+1}(1)$  normal to  $\xi$  at a point z

## Download English Version:

# https://daneshyari.com/en/article/843598

Download Persian Version:

https://daneshyari.com/article/843598

<u>Daneshyari.com</u>