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a b s t r a c t

The hydrologic processes of wetting and drying play a crucial role in agricultural activities involving
heavy equipment on unpaved terrain. When soil conditions moisten, equipment can become mired, caus-
ing expensive delays. While experienced users may assess soil conditions before entering off-road areas,
novice users or those who must remotely assess sites before traveling may have difficulty assessing con-
ditions reliably. One means of assessing dryness is remotely-monitored in situ sensors. Unfortunately,
land owners hesitate to place sensors due to monetary costs, complexity, and sometimes infeasibility
of physical visits to remote locations. This work addresses these limitations by modeling the wetting/
drying process through machine learning algorithms fed by hydrologic data – remotely assessing soil
conditions using only publicly-accessible information. Classification trees, k-nearest-neighbors,
and boosted perceptrons deliver statistical soil dryness estimates at a site located in Urbana, IL. The
k-nearest-neighbor and boosted perceptron algorithms both performed with 91–94% accuracy, with most
misclassifications falling within calculated margins of error. These analyses demonstrate that reasonably
accurate predictions of current soil conditions are possible with only precipitation and potential evapo-
ration data. These two values are measured throughout the continental United States and are likely to be
available globally from satellite sensors in the near future. Through this type of approach, agricultural
management decisions can be enabled remotely, without the time and expense of on-site visitations
or extensive ground-based sensory grids.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Previous work has made forays into soil drying assessments
over a diverse set of geographic locations, climate conditions, and
functional objectives. The primary dynamic process affecting soil
drying is precipitation (Entekhabi and Rodriguez-Iturbe, 1994).
For this reason, models of wetting and drying have often focused
upon an ‘‘antecedent precipitation index’’ (API), using a pre-set
window of previous rainfall to estimate current levels of soil mois-
ture (Saxton and Lenz, 1967). This particular concept of calculating
an API has been applied in a variety of contexts: in conjunction
with microwave sensing for soil moisture estimation (Blanchard
et al., 1981), soil water recession modeling for agriculture
(Choudhury and Blanchard, 1983), and for weather prediction
(Wetzel and Chang, 1988). Another approach is the development
of a stochastic model to estimate soil moisture distributions using
daily rainfall and an initialization of soil moisture values (Farago,
1985). However, both the API and stochastic approach require an
initial condition for soil moisture at the location where estimates

are desired. This hampers applicability at many locations that do
not have soil moisture sensors.

Other models have taken a hydrologic approach, employing
precipitation and surface radiation to estimate soil moisture
(Capehart and Carlson, 1994), but these models require boundary
conditions, initial conditions, and parameters of a thermal and/or
hydraulic nature that can be difficult to obtain broadly. Pan et al.
(2003) and Pan (2012) addressed this concern by deriving a
‘‘diagnostic soil moisture equation’’ from a stochastic, linear partial
differential equation. Soil moisture then becomes a function of a
temporally-decaying sum of previous rainfall. Their approach no
longer requires an initial condition, nor recalibration, but does
require a soil moisture sensor at the location in question to cali-
brate the equation initially. Measuring soil moisture directly is
plausible, but soil heterogeneity may necessitate numerous sen-
sors to address spatial variation of soil moisture adequately (Pan
and Peters-Lidard, 2008). The alternative approach of a soil water
balance can be applied, but must be recalibrated frequently, since
errors are cumulative (Jones, 2004).

In the agricultural arena, Gamache et al. (2009) developed a soil
drying model, but its predictions require data from cone penetrom-
eter and soil moisture sensors, two data sources that are not
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currently available at most remote sites. Another inquiry along
similar lines uses knowledge of soil types, which is theoretically
public, but then continues to require soil moisture levels from
proximal sensors (Chico-Santamarta et al., 2009).

Other approaches eschew the strategic placement of soil sen-
sors in favor of modeling tire slip as a function of tractor properties
(Sahu and Raheman, 2008) or other details such as vehicle type,
speed, load distribution, number of passes, etc. (Pytka, 2009 and
Lamande and Schjonning, 2008). These vehicle-specific properties
are often unavailable outside of research studies. Another early
work attempts to assess the suitability of site conditions, but uses
very specific information that is not likely to be available to most
applications, such as ‘‘stress–strain rate relations’’ or the results
of triaxial tests (Sharifat and Kushwaha, 2000).

Lee and Wang (2009) focus solely on radar and other remote
sensing data, but consider only the properties of snow coverage
along with the hardness and density of mixtures of snow and ice.
These traits are not appropriate for warmer weather conditions
of interest to agriculture. Sliva et al. (2009) modeled drying
properties of sugarcane fields in Brazil, but their model requires
that the prediction occur in a well-specified location within a
pre-determined time frame.

Alternatively, considerable prior research seeks techniques for
improving agricultural conditions (Tullberg et al., 2007; Shoop
et al., 2002 and Lebert et al., 2006) or minimizing the effects of traf-
fic (Raper, 2005) rather than delivering a dryness assessment. For
instance, one paper recommends a protocol for improving drying
via the application of manure (Mosaddeghi et al., 2000).

This paper addresses these gaps by developing and testing a
machine learning model of soil drying that requires only precipita-
tion and potential evaporatranspiration estimates. Precipitation is
widely available at high temporal resolution on a 1 km by 1 km
grid from NEXRAD1 throughout the continental United States.
Potential evapotranspiration is available publically in Illinois from
the Illinois State Water Survey, and can be estimated in other loca-
tions using three approaches (Jensen et al., 1990). The first method
requires only air temperature and day length (Thornthwaite, 1948;
Hamon, 1963). The second method requires air temperature and
net radiation (Priestley and Taylor, 1972). The third, and most
detailed approach, requires the information from the second as well
as wind speed and relative humidity (Monteith, 1965). The Illinois
Climate Network (ICN) data used in this analysis employs the third
approach, but one of these three approaches should be applicable
anywhere throughout the United States.

For the purposes of this analysis, the notion of dryness repre-
sents a user-defined assessment with qualitatively consistent
designations for a particular application. For example, diverse agri-
cultural activities (crops, livestock, etc.) may possess different
notions of acceptable soil conditions, but provided the algorithm
is given training data consistent to one particular context, it will
adapt appropriately. This current analysis focuses upon a general
test case for agricultural soil drying, where ‘‘dry’’ implies that a
given tract of farmland is viable for a particular type of work
(e.g., planting, crop treatment, or harvesting) on a given day.

Section 2 presents the case study, a brief overview of the geog-
raphy and relevant features of the South Farms test site that is the
focus of the data analysis presented in this work. Next, Section 3
describes the methodology used in remotely estimating dryness
from public data sources. Section 4 then presents the results of
the case study application and compares the relative performance
of the algorithms. Finally, the paper concludes in Section 5 with an
assessment of which machine learning techniques have performed

most successfully, a discussion of these results in the context of
previous work, and a brief discussion of potential future enhance-
ments and other applications of this research.

2. Case study – South Farms, Urbana, IL

The methods developed in this study are tested at the Univer-
sity of Illinois South Farms located in Urbana IL, which is classified
as a continental or microthermal climate, Dfa by the Koppen–
Geiger classification system (Koppen, 1936; updated by Peel
et al., 2007). The specific climate zone is characterized by a warm,
humid summer and colder, drier winters. Annual rainfall levels,
gathered from 1990 to 2011 at the ICN sensor located near the test
site (Fig. 2.1), average approximately 1013 mm per year. The
potential evapotranspiration estimate over the same time period
is 1046 mm per year. The warmest month is July and the coolest
is January, with average daily temperatures of 75.1 and 26.9�F
(24.0 and �2.8 Celsius) respectively. As precipitation levels and
potential evapotranspiration are both highest during the summer
(the middle of growing season), the flat landscape yields a test site
that will be characterized by multiple periods of wetting and dry-
ing during any growing season. Agricultural sites in this region are
often tile-drained, which results in a shorter soil drying system
memory than similar locations without the tile drains.

Fig. 2.1 presents the location of the test site, located within the
Energy and Biosciences Institute (EBI) energy farm. Also pictured is
the ICN sensor platform used in this analysis. The ICN sensors pro-
vide readings of potential evaporation (which incorporates solar
radiation, humidity, wind, temperature, etc.) and precipitation.
To the southeast are the largest plots maintained by EBI, upon
which soil condition assessments were gathered.

A John Deere intern, Jordan Pitcher, provided assessments of
soil conditions throughout the growing season within the green
square. Mr. Pitcher has extensive agricultural experience and his
assessments served as the soil dryness training and validation data
for the machine learning algorithms. The sensors labeled ‘‘EBI’’ pro-
vide precipitation information.

3. Methodology

This section describes the framework developed for assessing
dryness based on soil drying. An overview of the approach is first
provided, followed by a discussion of the various input data
sources, a description of the algorithms used to assess soil drying
and their outputs, and concluding with the computational tools
and requirements for implementation.

The first approach, the k-nearest-neighbor (KNN) algorithm,
which was introduced by Fix and Hodges (1951) and deployed in
many water resources and hydroinformatics applications (e.g.,
Kumar et al., 2006, Meliker et al., 2008, McRoberts et al., 2007;
Nemes et al., 2008 and Coopersmith et al., 2011), is an intuitively
satisfying approach for classification, analysis, and forecasting.
The algorithm simply uses current precipitation and potential
evapotranspiration measurements to locate the most similar
examples from historical data (whose field conditions are known)
and, in turn, leverages those similar examples to estimate the
current field readiness.

The second algorithm, decision trees (also referred to as
classification or regression trees), are non-parametric classification
tools that recursively split datasets by values of the independent
variables to minimize entropy in each subset and, thus, maximize
information gain (Breiman et al., 1984). These algorithms are
available in most statistical programming packages (Breiman
et al., 1993) and have been deployed in a variety of environmental
contexts, such as sustainable forest resource management (Aertsen

1 http://nmq.ou.edu/beta/q2-tools.html, provided through the University of
Oklahoma.
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