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1. Introduction

Let 2 be a smooth bounded domain in RN or the whole space R". We consider the initial-boundary value problem for the
semilinear parabolic equation of the following form:

u, = Au+ |VulPlul* 'y in (0, 00) x £2,
u(t,x) =0 in (0, c0) x 312, (1.1)
u(0, x) = ugp(x) in £,

where1 <p<2andg> 1.

It is well known that the semilinear parabolic equation u, = Au+ F(u, Vu) with a locally Lipschitz function F : RM! — R
has a local-in-time unique solvability in a sufficiently regular class. Indeed, it can be shown that if ug € WS’”(Q), then the
corresponding problem has a unique local solution u € L*([0, T), W&'O"(Q)) N C12((0,T) x ) for some T > 0, which is
a classical solution on (0, T) x 2 with [|u(t) — S()ugllwi.« — 0 ast | 0. Here (S5(t))eo is the heat semigroup with the
homogeneous Dirichlet boundary condition (see Eq. (2.2)).

In this paper, we are concerned with the existence of solutions of (1.1) with singular initial data ug ¢ L*°. Now let us
review some known results related to our investigation.

The landmark work in this direction has been done by Weissler [10,11], who establish the local L" theory of the semilinear
parabolic equation with the power nonlinearity |u|7 'y,

U= Au+ ulf'u  in (0, 00) x £2,
u(t,x) =0 in (0, 0c0) x 042, (1.2)
u(0, x) = up(x) in £,
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for a given ug € L'(2), 1 < r < oo. The following existence and uniqueness result is established, where the uniqueness part
is due to Brezis and Cazenave [5].

Theorem 1.1 ([10,11,5]). Putrg = @ Assumer > rq (resp.r =rg)and r > 1 (resp.r > 1). Given ug € L"(12), there exist a
time T = T(ug) > 0 and a unique function u € C([0, T], L'(2)) N C“%((0, T) x ©2) with u(0) = ug, which is a classical solution of
(1.2)on (0, T) x £2.

On the other hand, Ben-Artzi, Souplet and Weissler [2] recently obtain very elaborate results for the semilinear parabolic
equation with the gradient nonlinearity |Vu|P (which is referred as the viscous Hamilton-Jacobi equation),

u = Au+ |Vul’ in (0, c0) x £2,
u(t,x) =0 in (0, 00) x 042, (1.3)
u(0, x) = ug(x) in 0.

They provide the local theories for the problem (1.3) on L" for 1 < r < oo in the subquadratic case 1 < p < 2 and also on the
Sobolev space WS" for 1 < r < oo in the general case p > 1 as follows.

Theorem 1.2 ([2]). Let 1 <p < 2andletr; = N(Z%U. Assumer > ry (resp.r =ry)and r > 1 (resp.r > 1). Given ug € L'(12),

there exists a unique function u e C([0, 00), L'(£2)) N C?((0, oco) x 2) with u(0) = ug, which is a classical solution of (1.3) on
(0, ) x f.

Theorem 1.3 ([2]). Let r = N(p — 1). Assumer > rp (resp.r = rp)andr > 1 (resp.r > 1). Given ug € w;*((z), there exist a
time T = T(up) > 0 and a unique function u € C([0, T], Wg’r) N CcL2((0, T) x 12) with u(0) = ug, which is a classical solution of
(1.3)on (0, T) x £2.

Remark 1.4. When p < 2, all solutions of (1.3) exist globally. This follows from the facts that the maximum principle gives
a uniform bound in u and the nonlinearity satisfies Bernstein’s quadratic condition (cf. [3,7]). On the contrary, if p > 2, then
the gradient blowup phenomenon may occur in finite time T > 0 (cf. [9]). In addition, if a domain (2 is replaced by R or a
compact Riemannian manifold M without boundary, the gradient blowup does not occur even for every p > 2, that is, (1.3)
always admits global smooth solutions (cf. [1]).

Remark 1.5. In the framework of the space of continuous functions, the unique solvability for (1.3) is obtained for general
p > 0.Indeed, it is shown in [6] when 2 = RN that for every initial data uy € C(RN) N L>(RN), the Cauchy problem (1.3)
admits a unique classical solution

u € ([0, 00) x RY) N L*®([0, co) x RY) N c2((0, o0) x RY).

In Theorem 1.3, we note that when p > 2, the space of initial data W&’r((z) is contained in L*(2), sincer > r, > N.

Therefore, one can show similarly that the problem (1.1) has a local solution u € C([0, T], Wg’r(ﬁ)) for every ug € wg”(rz),
r > N(p — 1), provided that p > 2. This is the reason why we have restricted our attention to the case when p < 2 in the
problem (1.1).

In this paper, we establish the existence of solutions in the class C([0, T], E) for the initial-boundary problem (1.1), where
we take a Banach space E in the Lebesgue class {L"}1<;<~ and in the singular Sobolev class {Wé’r}ngN. Moreover, in the

quadratic case of p = 2, we present some evidence that local existence of (1.1) does not hold on W&’N in a reasonable class
of solutions.
Roughly speaking, our main results are summarized as follows.

1. When p < 2, existence holds on L" for r > ”“’%p’” (cf. Theorem 2.1)
2. When N > 2 and p < 2, existence holds on Wg‘r forr e [%, N). (cf. Theorem 3.1)
3. When N > 2 and p = 2, existence fails on W&’N. (cf. Theorem 4.1)

The outline of this paper is as follows. In Section 2, we establish existence and uniqueness in the Lebesgue class forp < 2.
In Section 3 we focus on (1.1) in the singular Sobolev class for p < 2. Finally, in Section 4 we provide some nonexistence
result on WS’N in the quadratic case p = 2.

2. In the Lebesgue class
In this section, we consider the problem (1.1) in the Lebesgue class {L"}1<,<c When 1 <p < 2.

Theorem 2.1. Let 1 < p < 2 and let py = "’(”%;”.Assume r=po > 1(resp.r > pg withr > 1). Given ug € L"(R2), there exist
a unique function u € ([0, 0o), L'(£2)) N CL2((0, 0o) x 12) with u(0) = ug, which is a classical solution of (1.1) on (0, 00) x £2.
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