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a b s t r a c t

An environmental dynamic system is usually modeled as a nonlinear system described by a set of non-
linear ODEs. A central challenge in computational modeling of environmental systems is the determina-
tion of the model parameters. In these cases, estimating these variables or parameters from other easily
obtained measurements can be extremely useful. This work addresses the problem of monitoring and
modeling a leaf area index and soil moisture model (LSM) using state estimation. The performances of
various conventional and state-of-the-art state estimation techniques are compared when they are uti-
lized to achieve this objective. These techniques include the extended Kalman filter (EKF), particle filter
(PF), and the more recently developed technique variational filter (VF). Specifically, two comparative
studies are performed. In the first comparative study, the state variables (the leaf-area index LAI , the vol-
umetric water content of the soil layer 1, HUR1 and the volumetric water content of the soil layer 2,
HUR2) are estimated from noisy measurements of these variables, and the various estimation techniques
are compared by computing the estimation root mean square error (RMSE) with respect to the noise-free
data. In the second comparative study, the state variables as well as the model parameters are simulta-
neously estimated. In this case, in addition to comparing the performances of the various state estimation
techniques, the effect of number of estimated model parameters on the accuracy and convergence of
these techniques are also assessed. The results of both comparative studies show that the PF provides
a higher accuracy than the EKF, which is due to the limited ability of the EKF to handle highly nonlinear
processes. The results also show that the VF provides a significant improvement over the PF because,
unlike the PF which depends on the choice of sampling distribution used to estimate the posterior distri-
bution, the VF yields an optimum choice of the sampling distribution, which also accounts for the
observed data. The results of the second comparative study show that, for all techniques, estimating more
model parameters affects the estimation accuracy as well as the convergence of the estimated states and
parameters. However, the VF can still provide both convergence as well as accuracy related advantages
over other estimation methods.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Crop models such as EPIC (Williams et al., 1989), WOFOST (Die-
pen et al., 1989), DAISY (Hansen et al., 1990), STICS (Brisson et al.,
1998), and SALUS (Basso and Ritchie, 2005) are dynamic nonlinear
models that describe the growth and development of a crop inter-
acting with environmental factors (soil and climate) and agricul-
tural practices (crop species, tillage type, fertilizer amount). They
are developed to predict crop yield and quality or to optimize
the farming practices in order to satisfy environmental objectives,
as the reduction of nitrogen lixiviation. More recently, crop models
are used to simulate the effects of climate changes on the agricul-
tural production. Nevertheless, the prediction errors of these mod-

els may be important due to uncertainties in the estimates of initial
values of the states, in input data, in the parameters, and in the
equations. The measurements needed to run the model are some-
times not numerous, whereas the field spatial variability and the
climatic temporal fluctuations over the field may be high. The de-
gree of accuracy is therefore difficult to estimate, apart from
numerous repetitions of measurements. For these reasons, the
problem of state/parameter estimation represents a key issue in
such nonlinear and non-Gaussian crop models including a large
number of parameters, while measurement noise exists in the
data.

Several state estimation techniques are developed and used in
practice. These techniques include the extended Kalman filter, par-
ticle filter, and more recently the variational filter. The classical
Kalman Filter (KF) was developed in the 1960s (Kalman, 1960),
and is widely used in various engineering and science applications,
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including communications, control, machine learning, neurosci-
ence, and many others. In the case, where the model describing
the system is assumed to be linear and Gaussian, the KF provides
an optimal solution (Simon, 2006; Grewal and Andrews, 2008; Aid-
ala, 1977; Matthies et al., 1989). The KF has also been formulated in
the context of Takagi–Sugeno fuzzy systems to handle nonlinear
models, which can be described as a convex set of multiple linear
models (Chen et al., 1998; Simon, 2003; Nounou and Nounou,
2006). It is known that the KF is computationally efficient; how-
ever, it is limited by the non-universal linear and Gaussian model-
ing assumptions. To relax these assumptions, the extended Kalman
filter (Simon, 2006; Grewal and Andrews, 2008; Julier and Uhl-
mann, 1997; Ljung, 1979; Kim et al., 1994) and the unscented Kal-
man filter (Simon, 2006; Grewal and Andrews, 2008; Wan and
Merwe, 2000; Merwe and Wan, 2001; Sarkka, 2007) are developed.
In extended Kalman filtering, the model describing the system is
linearized at every time sample (in order to estimate the mean
and covariance matrix of the state vector), and thus the model is
assumed to be differentiable. Unfortunately, for highly nonlinear
or complex models, the EKF does not usually provide a satisfactory
performance. On the other hand, instead of linearizing the model
to approximate the mean and covariance matrix of the state vector,
the UKF uses the unscented transformation to improve the approx-
imation of these moments. In the unscented transformation, a set
of samples (called sigma points) are selected and propagated
through the nonlinear model, which provides more accurate
approximations of the mean and covariance matrix of the state
vector, and thus more accurate state estimation.

Other state estimation techniques use a Bayesian framework to
estimate the state and/or parameter vector (Beal, 2003). The Bayes-
ian framework relies on computing the probability distribution of
the unobserved state given a sequence of the observed data in
addition to a state evolution model. Consider an observed data
set y, which is generated from a model defined by a set of unknown
state variables and/or parameters z (Beal, 2003). The beliefs about
the data are completely expressed via the parametric probabilistic
observation model, P(yjz). The learning of uncertainty or random-
ness of a process is solved by constructing a distribution P(zjy),
called the posterior distribution, which quantifies our belief about
the system after obtaining the measurements. According to Bayes
rule, the posterior can be expressed as:

PðzjyÞ / PðyjzÞPðzÞ;

where P(yjz) is the conditional distribution of the data given the
vector, z, which is called the likelihood function, and P(z) is the prior
distribution, which quantifies our belief about z before obtaining
the measurements. Thus, Bayes rule specifies how our prior belief,
quantified by the priori distribution, is updated according to the
measured data y. Unfortunately, for most nonlinear systems and
non-Gaussian noise observations, closed-form analytic expressions
of the posterior distribution of the state vector are untractable
(Kotecha and Djuric, 2003). To overcome this drawback, a non-para-
metric Monte Carlo sampling based method called particle filtering
(Storvik, 2002; Doucet and Tadić, 2003; Poyiadjis et al., 2005) has
recently gained popularity.

The Particle Filter approximates the posterior probability distri-
bution by a set of weighted samples, called particles (Arulampalam
et al., 2002). Since real-world problems usually involve high-
dimensional random variables with complex uncertainty, the
non-parametric and sample-based estimation of uncertainty (pro-
vided by the PF) has thus become quite popular to capture and rep-
resent the complex distribution P(zjy) for nonlinear and non-
Gaussian process models (Arulampalam et al., 2002). The PF has
the ability to accommodate nonlinear and multi-modal dynamics,
but at the cost of more computational complexity and storage
requirements. Also, taking into account the stringent calculus

and storage constraints, the propagation of a huge amount of par-
ticles has impeded the implementation of the PF in very challeng-
ing parameter estimation problems. As a consequence, the
variational filter is proposed recently to enhance state estimation
(Mansouri et al., 2009; Balaji and Friston, 2011) because VF yields
an optimal choice of the sampling distribution by minimizing a
Kullback–Leibler (KL) divergence criterion. In fact, variational cal-
culus leads to a simple Gaussian sampling distribution whose
parameters (which are estimated iteratively) also utilize the ob-
served data, which provides more accurate and computationally
efficient computation of the posterior distribution.

Each of the above state estimation techniques has its advanta-
ges and disadvantages. The VF can be applied to large parameter
spaces, has better convergence properties, and is easier to imple-
ment than the PF, and both of them can provide improved accuracy
over the EKF. The objective of this paper is to compare the perfor-
mances of the EKF, PF, and VF when used to monitor and model a
LSM process through the estimation of its state variables and mod-
el parameters. This comparative study is assess the accuracy and
convergence of these techniques, as well as the effect of the size
of the parameter space (i.e., number of estimated parameters) on
the performances of these estimation techniques. Some practical
challenges, however, can affect the accuracy of estimated states
and/or parameters. Such challenges include the large number of
states and parameters to be estimated, the presence of measure-
ment noise in the data, and the availability of small number of
measured data samples. The objective of this paper is two-fold:
(i) we study the accuracy and convergence of EKF, UKF and PF tech-
niques and (ii) we investigate the effect of the above challenges on
the performances of these techniques. Then, a comparative inves-
tigation are conducted to study their performances under the same
challenge mentioned above. The above analysis are performed
using an environment process model representing leaf area index
and soil moisture (LSM) (i.e, the leaf-area index LAI, the volumetric
water content of the layer 1, HUR1 and the volumetric water con-
tent of the layer 2, HUR2) and their abilities to estimate some of
the key system parameters, which are needed to define the LSM
model.

The rest of the paper is organized as follows. In Section 2, a
statement of the problem addressed in this paper is presented, fol-
lowed by descriptions of various commonly used state estimation
techniques in Section 2.2. Then, in Section 3, the performances of
the various state estimation techniques are compared through
their application to estimate the state variables and model param-
eters of a LSM process. Finally, some concluding remarks are pre-
sented in Section 4.

2. Material and methods

In this section, the mathematical formulation of the state/
parameter estimation problem is developed, according to the filter-
ing approaches that are studied. In a second step, the dynamic
model simulation is presented, and the problem is formulated.

2.1. Problem statement

Here, the estimation problem of interest is formulated for a gen-
eral system model. Let a nonlinear state space model be described
as follows:

_x ¼ gðx;u; h;wÞ;
y ¼ lðx;u; h;vÞ;

ð1Þ

where x 2 Rn is a vector of the state variables, u 2 Rp is a vector of
the input variables, h 2 Rq is an unknown parameter vector, y 2 Rm

is a vector of the measured variables, w 2 Rn and v 2 Rm are process
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