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Abstract

Ordinary differential equations are considered consisting of two equations with nonlinear coupling
where the linear parts of the two equations have equilibria which are, respectively, a saddle and a center.
Perturbation terms are added which correspond to damping and forcing. A reduced equation is obtained
from the hyperbolic equation by setting to zero the variable from the center equation with a homoclinic
structure. The center equation is resonant in the equilibrium. Melnikov theory is used to obtain a transverse
bounded solution of the whole equation. The techniques make use of exponential dichotomies and an
averaging procedure.
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1. Introduction

We consider differential equations of the form

ẋ = f (x, y, μ, t) = f0(x, y)+ μ1 f1(x, y, μ, t)+ μ2 f2(x, y, μ, t), (1.1)

ẏ = g(x, y, μ, t) = g0(x, y)+ μ1g1(x, y, μ, t)+ μ2g2(x, y, μ) (1.2)

with x ∈ R
n , y ∈ R

m , μ = (μ1, μ2) ∈ R
2.

∗ Corresponding author.
E-mail addresses: Michal.Feckan@fmph.uniba.sk (M. Fečkan), Joseph Gruendler@Hotmail.com (J. Gruendler).
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We make the following assumptions about (1.1) and (1.2):

(i) Each fi , gi is C4 in all arguments.

(ii) f1, f2 and g1 are periodic in t with period T .

(iii) D2 f0(x, 0) = 0.

(iv) The eigenvalues of D1 f0(0, 0) lie off the imaginary axis.

(v) The equation ẋ = f0(x, 0) has a homoclinic solution γ .

(vi) g0(x, 0) = g2(x, 0, μ) = 0, D21g0(0, 0) = 0 and D22g0(0, 0) = 0.

(vii) The eigenvalues of D2g0(0, 0) lie on the imaginary axis.

(viii) If μ2 → λ(μ2) is a function such that λ(μ2) is an eigenvalue of the matrix D2g0(0, 0)+
μ2 D2g2(0, 0, 0) then R(λ′(0)) < 0.

In the hypothesis (viii), it is sufficient to assume that R(λ′(0)) �= 0. In other words, (1.2) is
weakly hyperbolic with respect to μ2. This more general assumption requires a little more work
since it is necessary to include a nontrivial projection in Lemma 3.2 below.

Consider the equation

ẋ = f0(x, 0)+ μ1 f1(x, 0, μ, t)+ μ2 f2(x, 0, μ, t) (1.3)

obtained by setting y = 0 in (1.1). Eq. (1.3) is called the reduced equation obtained from
(1.1) and (1.2). By hypothesis, the equation ẋ = f0(x, 0) has a hyperbolic equilibrium and a
homoclinic solution γ . Melnikov theory is used in [11] to obtain a transverse homoclinic solution
in the reduced equation (see also [1,9,10]). The problem which naturally arises is showing that a
transverse homoclinic solution for the reduced equation is shadowed by a transverse homoclinic
solution for the full equation (1.1) and (1.2). This was done in [8] when the center equation

ẏ = g0(0, y)+ μ1g1(0, y, μ, t)+ μ2g2(0, y, μ) (1.4)

is not resonant at y = 0. On the other hand, the resonant case is also studied in [8] when a
transverse homoclinic solution of the full system is not detected from the reduced equation
although with the additional condition D222g0(0, 0) = 0 we develop a Melnikov function
containing terms also from the center part. The purpose of the present work is to treat the resonant
case without this additional condition and again to detect a transverse homoclinic solution for
the full system from a Melnikov function derived from the reduced and center equations. But the
situation in this paper is much more delicate than in [8].

The plan of this paper is as follows. In Section 2, we study a concrete system of two coupled
second-order ordinary differential equations of the form (1.1) and (1.2). The reduced equation
(1.3) now has a Duffing form [17], while the center equation (1.4) is a nonlinear oscillator. We
introduce some parameters and then find a concrete numerical relation between them in order to
get a transverse homoclinic solution for the perturbed system. Then in Section 3, we generalize
the method of Section 2 to arbitrary systems of the form (1.1) and (1.2). In the concluding
Section 4, we discuss the use of averaging theory [15] in our approach to improve the results
of Section 2.

Finally we note that a related problem is studied also in [5], where a three-dimensional
ordinary differential equation is considered with a slowly varying one-dimensional variable. The
approach in [5] is more geometrical than ours in this paper.
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