

Contents lists available at ScienceDirect

Nonlinear Analysis

Strong convergence theorems for monotone mappings and relatively weak nonexpansive mappings

Habtu Zegeye^a, Naseer Shahzad ^{b,*}

ARTICLE INFO

Article history:

Received 17 October 2007 Accepted 31 March 2008

MSC:

47H05

47J05

47J25

Keywords:

Generalized projection γ-inverse strongly monotone mappings Monotone mappings Strong convergence Strongly monotone mappings

variational inequality problems

ABSTRACT

In this paper, we prove strong convergence theorems to a zero of monotone mapping and a fixed point of relatively weak nonexpansive mapping. Moreover, strong convergence theorems to a point which is a fixed point of relatively weak nonexpansive mapping and a solution of a certain variational problem are proved under appropriate conditions.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Let E be a real Banach space with dual E^* . We denote by J the normalized duality mapping from E to 2^{E^*} defined by

$$Jx := \{f^* \in E^* : \langle x, f^* \rangle = ||x||^2 = ||f^*||^2\},$$

where $\langle .,. \rangle$ denotes the generalized duality pairing. It is well known that if E^* is strictly convex then J is single valued and if E is uniformly smooth then J is uniformly continuous on bounded subsets of E. Moreover, if E is a reflexive and strictly convex Banach space with a strictly convex dual, then J^{-1} is single valued, one-to-one, surjective, and it is the duality mapping from E^* into E and thus $JJ^{-1} = I_{E^*}$ and $J^{-1}J = I_{E}$ (see, [6,21]). We note that in a Hilbert space, E, E is the identity operator.

A mapping $A: D(A) \subset E \to E^*$ is said to be *monotone* if for each $x, y \in D(A)$, the following inequality holds:

$$\langle Ax - Ay, x - y \rangle \ge 0. \tag{1.1}$$

A is said to be γ -inverse strongly monotone if there exists a positive real number γ such that

$$\langle x - y, Ax - Ay \rangle \ge \gamma ||Ax - Ay||^2$$
, for all $x, y \in K$. (1.2)

If *A* is γ -inverse strongly monotone, then it is *Lipschitz continuous* with constant $\frac{1}{\gamma}$, i.e., $||Ax - Ay|| \le \frac{1}{\gamma} ||x - y||$, for all $x, y \in D(A)$, and it is called *strongly monotone* if for each $x, y \in D(A)$ there exists $k \in (0, 1)$ such that

$$\langle Ax - Ay, x - y \rangle \ge k||x - y||^2. \tag{1.3}$$

E-mail addresses: habtuzh@yahoo.com (H. Zegeye), nshahzad@kaau.edu.sa, Naseer_shahzad@hotmail.com (N. Shahzad).

^a Bahir Dar University, P.O. Box. 859, Bahir Dar, Ethiopia

^b Department of Mathematics, King Abdul Aziz University, P. O. B. 80203, Jeddah 21589, Saudi Arabia

^{*} Corresponding author.

A monotone mapping *A* is said to be *maximal* if its graph $G(T) = \{(x, y) : y \in Ax\}$ is not properly contained in the graph of any other monotone mapping. It is known that monotone mapping *A* is maximal if and only if for $(x, x^*) \in E \times E^*$, $(x-y, x^*-y^*) \ge 0$ for every $(y, y^*) \in G(A)$ implies that $x^* \in A(T)$.

The notion of monotone mappings was introduced by Zarantonello [24], Minty [14] and Kacurovskii [9] in Hilbert spaces. Monotonicity conditions in the context of variational methods for nonlinear operator equations were also used by Vainberg and Kacurovskii [22]. This notion has been extended to Banach spaces by several authors (see, e.g., [1,3,7,10,18] and the references contained therein).

Let *E* be a smooth Banach space. The function $\phi: E \times E \to \mathbb{R}$ defined by

$$\phi(x, y) = \|x\|^2 - 2\langle x, Jy \rangle + \|y\|^2 \quad \text{for } x, y \in E,$$
(1.4)

is studied by Alber [1], Kimimura and Takahashi [10] and Reich [17]. It is obvious from the definition of the function ϕ that

$$(\|x\| - \|y\|)^2 \le \phi(x, y) \le (\|x\| + \|y\|)^2$$
 for $x, y \in E$.

Observe that in a Hilbert space H, (1.4) reduces to $\phi(x, y) = ||x - y||^2$, for $x, y \in H$.

Let *E* be a reflexive, strictly convex and smooth Banach space and let *K* be a nonempty closed and convex subset of *E*. The *generalized projection mapping*, introduced by Alber [1], is a mapping $\Pi_K : E \to K$, that assigns to an arbitrary point $x \in E$ the minimum point of the functional $\phi(x, y)$, that is, $\Pi_K x = \bar{x}$, where \bar{x} is the solution to the minimization problem

$$\phi(\bar{x}, x) = \min\{\phi(y, x), y \in K\}. \tag{1.5}$$

In fact, we have the following result.

Lemma 1.1 ([1]). Let K be a nonempty closed and convex subset of a real reflexive, strictly convex, and smooth Banach space E and let $x \in E$. Then there exists a unique element $x_0 \in K$ such that $\phi(x_0, x) = \min\{\phi(z, x) : z \in K\}$.

Let K be a nonempty closed convex subset of E, and let E be a mapping from E into itself. We denote by E by the set of fixed points of E. A point E in E is said to be an asymptotic fixed point of E [3] if E contains a sequence E which converges weakly to E such that E important into itself is called nonexpansive if E if E into itself is called nonexpansive if E if E if E into itself is called nonexpansive if E if E if E if E if E if E into itself is called nonexpansive if E is said to be a strong asymptotic behavior of relatively nonexpansive mappings was studied in [3–5]. A point E in E is said to be a strong asymptotic fixed point of E if E contains a sequence E is all to be denoted by E if E into itself is called relatively weak nonexpansive if E if E if E into itself is called relatively weak nonexpansive if E if E into itself is called relatively weak nonexpansive if E into itself is called relatively weak nonexpansive if E into itself is called relatively weak nonexpansive if E into itself is called relatively weak nonexpansive if E into itself is called relatively weak nonexpansive if E into itself is called relatively weak nonexpansive if E into itself is called relatively weak nonexpansive if E into itself is called relatively weak nonexpansive if E into itself is called relatively weak nonexpansive if E into itself is called relatively weak nonexpansive if E into itself is called relatively weak nonexpansive if E into itself is called relatively weak nonexpansive if E into itself is called relatively weak nonexpansive if E into itself is called relatively weak nonexpansive if E into itself is called relatively weak nonexpansive if E into itself is called relatively weak nonexpansive if E into itself is called relatively weak nonexpansive if E into itself is called relatively weak nonexpansive if E into itself is called relatively weak nonexpans

If *E* is a smooth, strictly convex and reflexive Banach space, and $A \subset E \times E^*$ is a continuous monotone mapping with $A^{-1}(0) \neq \emptyset$ then it is proved in [12] that $J_r := (J + rA)^{-1}J$, for r > 0 is relatively weak nonexpansive. Moreover, if $T : E \to E$ is relatively weak nonexpansive then using the definition of ϕ one can show that F(T) is *closed and convex*.

It is obvious that a relatively nonexpansive mapping is a relatively weak nonexpansive mapping. In fact, for any mapping $T: K \to K$, we have $F(T) \subset \widetilde{F}(T) \subset \widehat{F}(T)$. Therefore, if T is a relatively nonexpansive mapping, then $F(T) = \widetilde{F}(T) = \widehat{F}(T)$.

Suppose that A is monotone mapping from K into E. The variational inequality problem is formulated as finding

a point
$$u \in K$$
 such that $\langle v - u, Au \rangle \ge 0$, for all $v \in K$. (1.6)

The set of solutions of the variational inequality problem is denoted by VI(K, A). Variational inequalities were initially studied by Stampacchia [11,13] and ever since have been widely studied. Such a problem is connected with the convex minimization problem, the complementarity problem, the problem of finding point $u \in K$ satisfying VI(K, A). If E = H, a Hilbert space, one method of solving a point $u \in VI(K, A)$ is the projection algorithm which starts with any point $x_1 = x \in K$ and updates iteratively as x_{n+1} according to the formula

$$x_{n+1} = P_K(x_n - \alpha_n A x_n)$$
, for any $n \ge 1$,

where P_K is the metric projection from H onto K and $\{\alpha_n\}$ is a sequence of positive real numbers. In the case when A is γ -inverse strongly monotone, liduka, Calabashi and Toyoda [7] studied the following iterative scheme (see, e.g., [19], [15]).

$$\begin{cases} x_{0} \in K, \text{ chosen arbitrary,} \\ y_{n} = P_{K}(x_{n} - \alpha_{n}Ax_{n}) \\ C_{n} = \{z \in K : ||y_{n} - z|| \leq ||x_{n} - z||\}, \\ Q_{n} = \{z \in K : \langle x_{n} - z, x_{0} - x_{n} \rangle \geq 0\}, \\ x_{n+1} = P_{C_{n} \cap Q_{n}}(x_{0}), n \geq 1, \text{ for } n \geq 1, \end{cases}$$

$$(1.7)$$

where $\{\alpha_n\}$ is a sequence in $[0, 2\gamma]$. They proved that the sequence $\{x_n\}$ generated by (1.7) converges strongly to $P_{VI(K,A)}(x_0)$, where $P_{VI(K,A)}$ is the metric projection from K onto VI(K,A). In the case that E is a Banach space, Alber [1] proved the following strong convergence theorem to the unique solution of the variational inequality VI(K,A).

Theorem A1 ([1]). Let K be a nonempty closed convex subset of a uniformly convex and uniformly smooth Banach space E. Suppose an operator A of E into E^* satisfies the following conditions:

- (i) A is uniformly monotone, that is $\langle x-y, Ax-Ay\rangle \geq \psi(\|x-y\|)$ for all $x,y\in E$, where $\psi(t)$ is a strictly increasing function for all $t\geq 0$ with $\psi(0)=0$.
- (ii) $VI(K, A) \neq \emptyset$.

Download English Version:

https://daneshyari.com/en/article/843689

Download Persian Version:

https://daneshyari.com/article/843689

Daneshyari.com