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Abstract

A nonautonomous Lotka–Volterra dispersal system with continuous delays and discrete delays is considered. By using a
comparison theorem and delay differential equation basic theory, we obtain sufficient conditions for the permanence of the
population in every patch. By constructing a suitable Lyapunov functional, we prove that the system is globally asymptotically
stable under some appropriate conditions. Using almost periodic functional hull theory, we get sufficient conditions for the
existence, uniqueness and globally asymptotical stability for an almost periodic solution. This implies that the population in every
patch exhibits stable almost periodic fluctuation. Furthermore, the results show that the permanence and global stability of system,
and the existence and uniqueness of a positive almost periodic solution, depend on the delay; then we call it “profitless”.
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1. Introduction

It is well known that the classical Lotka–Volterra type systems form a significant component of the models of
species population dynamics. Recently, delays [1–11] and diffusions [11–16] have been extensively introduced into
Lotka–Volterra type systems, which enriches the biological background. The effect of environment change in the
growth and diffusion of a species in a heterogeneous habitat is a subject of considerable interest in the ecological
literature [16–22]. Because of the ecological effects of human activities and industry, more and more habitats are
broken into patches and some of them are polluted. In some of these patches, without the contribution from other
patches, a species will go to extinction. The general delay differential equations exhibit much more complicated
dynamics than ordinary differential equations since a time delay could cause a stable equilibrium to become unstable
and cause the population to fluctuate. Negative feedback crowding or the effect of the past life history of the species
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on its present birth rate are common examples illustrating the biological meaning of time delays and justifying their
use in these systems.

Since biological and environmental parameters are naturally subject to fluctuation in time, the effects of a
periodically or almost periodically varying environment are considered as important selective forces on systems in
a fluctuating environment. So, models in [1–14] take into account both the seasonality of the periodically changing
environment and the effects of time delays. The coincidence degree theorem is extensively applied to prove the
existence of a periodic solution in [9–11,14]. However, in the real world, it is more realistic to consider an almost
periodic system than a periodic system. By using the definition of an almost periodic solution or the contraction
mapping and fixed point theory, some authors have done many good works in theory on almost periodic systems [17–
19,27–29]. However, there is not much research into global stability of almost periodic systems with time delays based
on the construction of suitable Lyapunov functionals and almost periodic hull theory. The most basic and important
questions to ask for these systems in the theory of mathematical ecology are those of the permanence, extinctions,
global asymptotic behaviors, and existences of coexistence states (for example, the positive equilibrium, strictly
positive solution, positive periodic solution, periodic solution and almost periodic solution, etc.) of the population
(see [1–22]). In this paper, we consider a nonautonomous Lotka–Volterra almost periodic dispersal system with
delays, and investigate the persistence, global asymptotic behaviors, strictly positive solution and strictly positive
almost periodic solution of the system by using almost periodic functional hull theory.

Now we shall consider the model with combined effects: diffusion, almost periodicity of the environment and time
delays. Namely, we investigate the following nonautonomous Lotka–Volterra type dispersal almost periodic system
with discrete and continuous finite time delays which models the diffusion of a single species xi into n patches
connected by discrete dispersal:

ẋi (t) = xi (t)

[
ri (t)− ai (t)xi (t)− ai i (t)xi (t − τi (t))−

∫ 0

−%i

bi (t, s)xi (t + s)ds

]

+

n∑
j=1

Di j (t)(x j (t)− xi (t)), i = 1, 2, . . . , n, (1)

where xi (t) represents the density of the species in the i th patch, Di j (t) is the rate of dispersion of the species
from patch j to patch i , ri (t) is the intrinsic growth rate of the species in patch i , ai (t) is the death rate (or density
dependence) of the species in patch i , the terms ai i (t)xi (t − τi (t)) and

∫ 0
−%i

bi (t, s)xi (t + s)ds represent the negative
feedback crowding and the effect of a period of past life history of the species on its present birth rate, respectively.
We refer the readers to good books [23–25] for the basic results on the almost periodic functions.

Suppose that h(t) is an almost periodic function defined on R. Define hu
= limt→∞ sup h(t), hl

= limt→∞ inf h(t)
and H(h(t)) denotes the hull of h(t).

In this paper, for system (1) we always assume that for all i, j = 1, 2, . . . , n:

(H1) The almost periodic functions ri (t), ai (t), ai i (t), and Di j (t) are nonnegative and continuous for all t ∈ R,
al

i ≥ 0, al
i i ≥ 0 and al

i + al
i i 6= 0, H(ri (t)) > 0.

(H2) The almost periodic functions bi (t, s) are defined on R × [−%i , 0], nonnegative, continuous with respect to
t ∈ R, and uniformly integrable with respect to s ∈ [−%i , 0] such that 0 <

∫ 0
−%i

bl
i (s)ds = αi ≤ βi =∫ 0

−%i
bu

i (s)ds < ∞. There are nonnegative and continuous functions hi (s) defined on [−%i , 0] satisfying

0 <
∫ 0
−%i
(−s)hi (s)ds < ∞ such that bi (t, s) ≤ hi (s) for all (t, s) ∈ R × [−%i , 0].

(H3) τi (t) is a nonnegative, continuous and differentiable almost periodic function on R, and τ̇i (t) is uniformly
continuous with respect to t ∈ R and inft∈R{1 − τ̇i (t)} > 0. Let τ ∗

= max{τ u
i , i = 1, 2, . . . , n}; then we have

0 ≤ τ ∗ < ∞. Let σi (t) = t − τi (t); then the function σ−1
i (t) is an inverse function for the function σi (t).

The following notation and concepts are adopted throughout this paper.
Set

Ch =

{
φ(t) ∈ C(R−, Rn) :

∫ 0

−%

sup
s≤t≤0

|φ(t)|ds < ∞

}
,
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