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Multiple solutions of some nonlinear fourth-order beam equations
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Abstract

Several new existence theorems on three solutions and infinitely many solutions for the following fourth-order beam equation
are obtained:

u(4)
= f (t, u(t)), t ∈ [0, 1]; u(0) = u(1) = u′′(0) = u′′(1) = 0,

where f ∈ C1([0, 1] × R1,R1). The Morse theory is employed to discuss this problem.
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1. Introduction and main results

It is well known that the following fourth-order two-point boundary value problem (BVP):{
u(4)

= f (t, u(t)), t ∈ [0, 1]

u(0) = u(1) = u′′(0) = u′′(1) = 0
(1.1)

describes the deformation of an elastic beam both of whose ends are simply supported at 0 and 1. In recent years, much
attention has been given to BVP (1.1) by a number of authors; see [2,11–14,19] and references therein. Among this
literature, most of the authors obtained the existence of positive solutions under the assumption that f is superlinear
or sublinear in u by employing the cone expansion or compression fixed point theorem, except [11]. In [11], by using
the strongly monotone operator principle and the critical point theory, Li et al. established some sufficient conditions
for f to guarantee that the problem has a unique solution, at least one nonzero solution, or infinitely many solutions.
In a later paper [9], by combining the critical point theory and the method of subsolutions and supersolutions, some
new existence theorems on multiple positive, negative and sign-changing solutions of BVP (1.1) are established. And
those theorems therein can deal with the nonlinearity composed of a sublinear function and a superlinear function.

In the present paper, we consider the multiplicity of the solutions to BVP (1.1) and establish a three-solution
theorem and an infinitely many-solution theorem by applying the Morse theory. Our methods are different from those
of the literature mentioned above. Throughout the paper, we will assume that f ∈ C1([0, 1]×R1, R1). Then the main
results can be stated as follows.
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Theorem 1.1. Assume that the following conditions hold:

(H1) f (t, 0) = 0 for t ∈ [0, 1];
(H2) there exist α and β ∈ R1 with α < π4/2 such that

F(t, u) :=

∫ u

0
f (t, v)dv 6 αu2

+ β for all (t, u) ∈ [0, 1] × R1
; (1.2)

(H3) there exists a natural number m > 1 such that

m4π4 < f ′
u(t, 0) < (m + 1)4π4 for all t ∈ [0, 1],

where f ′
u(t, u) denotes the first-order derivative of f in u.

Then BVP (1.1) has at least three distinct solutions in C4
[0, 1].

Remark 1.2. When dealing with BVP (1.1) using Amann’s three-solution theorem [1, Theorem 14.2], we usually
assume that f (t, u) is increasing in u and should impose conditions to ensure the existence of subsolutions and
supersolutions for BVP (1.1) (see [9] for example). In [10], Henderson and Thompson applied the Leggett–Williams
fixed point theorem to obtain a three-solution theorem for some higher even order boundary value problems, where
they imposed growth conditions on f on three intervals. Our conditions imposed here are quite different from theirs
in the literature.

Theorem 1.3. Assume that the following conditions hold:

(H4) there exist ν > 2 and M > 0 such that

0 < νF(t, u) 6 u f (t, u) for all |u| > M and t ∈ [0, 1]; (1.3)

(H5) f (t, u) is odd in u, i.e., f (t, −u) = − f (t, u) for all (t, u) ∈ [0, 1] × R1.

Then BVP (1.1) has infinitely many solutions in C4
[0, 1].

Remark 1.4. In [11], using a symmetric mountain pass lemma [16, Theorem 9.12] due to Rabinowitz, Li et al.
obtained an infinitely many-solution result for BVP (1.1) under the following conditions [11, Theorem 3.4]:

(i) f (t, u) ∈ C([0, 1] × R1, R1) is odd in u;
(ii) there exist µ ∈ [0, 1/2) and M > 0 such that F(t, u) 6 µu f (t, u) for all |u| > M and t ∈ [0, 1];

(iii) lim supu→0 f (t, u)/u < π4, lim infu→+∞ f (t, u)/u = +∞ uniformly for t ∈ [0, 1].

In Theorem 1.3, we replace condition (ii) above by a slightly stronger condition (H4) and strengthen the
differentiability of f . At the same time, we remove condition (iii). In fact, (H4) implies that f (t, u) is superlinear
at +∞ in u; see (3.17) in Section 3. Essentially, the method in [11] is the Z2-index theory (i.e. genus), while our
method is the Morse theory.

We present two simple examples to which Theorems 1.1 and 1.3 can be applied respectively.

Example 1.5. Let

f (t, u) = 81u + 4015 sin u + t for all (t, u) ∈ [0, 1] × R1.

It is easy to verify that all conditions of Theorem 1.1 are satisfied. So Theorem 1.1 ensures that BVP (1.1) has at least
three distinct solutions.

Example 1.6. Let

f (t, u) = π4u + a(t) arctan u ln(1 + u2) + bu3 for all (t, u) ∈ [0, 1] × R1,

where a ∈ C1
[0, 1], a(t) > 0 for t ∈ [0, 1] and b > 0. It is obvious that f (t, u) ∈ C1([0, 1] × R1, R1) is odd in u.

Observe that F(t, u) > 0 for all (t, u) ∈ [0, 1] × (0, ∞) and

lim
u→∞

f (t, u)

u3 = b > 0.

According to Remark 3.1 in [11], we know that (H4) holds. Theorem 1.3 guarantees that BVP (1.1) has infinitely
many solutions. It should be pointed that Theorem 3.4 in [11] cannot be applied to this example.
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