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Abstract

Several new existence theorems on three solutions and infinitely many solutions for the following fourth-order beam equation
are obtained:

u® = Feu@), €01, u©0) =u(l)=u"©0)=u"(1)=0,

where f € C1([0, 1] x R!, R!). The Morse theory is employed to discuss this problem.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction and main results

It is well known that the following fourth-order two-point boundary value problem (BVP):

{u<4> = f@t,u(r), te[0,1]

u@0 =u(l)=u"0)=u"(1) =0 (1.1)

describes the deformation of an elastic beam both of whose ends are simply supported at 0 and 1. In recent years, much
attention has been given to BVP (1.1) by a number of authors; see [2,11-14,19] and references therein. Among this
literature, most of the authors obtained the existence of positive solutions under the assumption that f is superlinear
or sublinear in # by employing the cone expansion or compression fixed point theorem, except [11]. In [11], by using
the strongly monotone operator principle and the critical point theory, Li et al. established some sufficient conditions
for f to guarantee that the problem has a unique solution, at least one nonzero solution, or infinitely many solutions.
In a later paper [9], by combining the critical point theory and the method of subsolutions and supersolutions, some
new existence theorems on multiple positive, negative and sign-changing solutions of BVP (1.1) are established. And
those theorems therein can deal with the nonlinearity composed of a sublinear function and a superlinear function.

In the present paper, we consider the multiplicity of the solutions to BVP (1.1) and establish a three-solution
theorem and an infinitely many-solution theorem by applying the Morse theory. Our methods are different from those
of the literature mentioned above. Throughout the paper, we will assume that f € C'([0, 1] x R!, R!). Then the main
results can be stated as follows.
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Theorem 1.1. Assume that the following conditions hold:

Hp) f(,0)=0fort €[0,1];
(Ha) there exist o and p € R! with o < /2 such that

F(t,u) = /u ft,vydv <au’+ B forall (t,u) €10, 1] x R'; (1.2)
0

(H3) there exists a natural number m > 1 such that
miat < f1(1,0) < m+ D*z*  forallt €0, 1],
where f)(t, u) denotes the first-order derivative of f in u.
Then BVP (1.1) has at least three distinct solutions in cio, 1].

Remark 1.2. When dealing with BVP (1.1) using Amann’s three-solution theorem [1, Theorem 14.2], we usually
assume that f (¢, u) is increasing in # and should impose conditions to ensure the existence of subsolutions and
supersolutions for BVP (1.1) (see [9] for example). In [10], Henderson and Thompson applied the Leggett—Williams
fixed point theorem to obtain a three-solution theorem for some higher even order boundary value problems, where
they imposed growth conditions on f on three intervals. Our conditions imposed here are quite different from theirs
in the literature.
Theorem 1.3. Assume that the following conditions hold:
(Hy) there existv > 2 and M > 0 such that

0<vF(t,u) <uf(t,u) foralllu|> M andt € [0, 1]; (1.3)
(Hs) f(t,u)isoddinu,ie., f(t,—u)=—f(t, u)forall (t,u) [0, 1] x R

Then BVP (1.1) has infinitely many solutions in C*[0, 1].

Remark 1.4. In [11], using a symmetric mountain pass lemma [16, Theorem 9.12] due to Rabinowitz, Li et al.
obtained an infinitely many-solution result for BVP (1.1) under the following conditions [11, Theorem 3.4]:

Q) f@t,u) e C([0, 1] x R, R is odd in u;
(ii) there exist u € [0, 1/2) and M > 0 such that F (¢, u) < puuf(t,u) forall |u| > M and ¢ € [0, 1];
(iii) limsup,_,o f(t, u)/u < 74, liminf, ., 4 oo f (¢, u)/u = 400 uniformly for 7 € [0, 1].

In Theorem 1.3, we replace condition (ii) above by a slightly stronger condition (H4) and strengthen the
differentiability of f. At the same time, we remove condition (iii). In fact, (H4) implies that f (¢, u) is superlinear
at +oo in u; see (3.17) in Section 3. Essentially, the method in [11] is the Z;-index theory (i.e. genus), while our
method is the Morse theory.

We present two simple examples to which Theorems 1.1 and 1.3 can be applied respectively.

Example 1.5. Let
f(t,u) =8lu+4015sinu +¢ forall (£, u) € [0, 1] x RL.

It is easy to verify that all conditions of Theorem 1.1 are satisfied. So Theorem 1.1 ensures that BVP (1.1) has at least
three distinct solutions.

Example 1.6. Let
ft,u) = i+ a(t)arctanu In(1 + uz) +bu’  forall (t,u) €0, 1] x ]Rl,
where a € C'[0, 1], a(r) > 0 for¢ € [0, 1]and b > 0. It is obvious that f(¢,u) € C'([0, 1] x R}, R!) is odd in u.
Observe that F'(t, u) > 0 for all (z, u) € [0, 1] x (0, c0) and
. S, u)
im 3
U— 00 u
According to Remark 3.1 in [11], we know that (H4) holds. Theorem 1.3 guarantees that BVP (1.1) has infinitely
many solutions. It should be pointed that Theorem 3.4 in [11] cannot be applied to this example.

=b>0.
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