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Normal tissue at risk of neoplastic transformation is characterized by somatic mutations, copy-number variation
and DNAmethylation changes. It is unclear however, which type of alterationmay bemore informative of cancer
risk.We analyzed genome-wide DNAmethylation and copy-number calls from the sameDNA assay in a cohort of
healthy breast samples and age-matched normal samples collected adjacent to breast cancer. Using statistical
methods to adjust for cell type heterogeneity, we show that DNA methylation changes can discriminate
normal-adjacent from normal samples better than somatic copy-number variants. We validate this important
finding in an independent dataset. These results suggest that DNA methylation alterations in the normal cell of
origin may offer better cancer risk prediction and early detection markers than copy-number changes.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Throughout life, normal cells acquire somatic alterations in the ge-
nome and epigenome, both of which are thought to contribute to the
onset of neoplasia and cancer [1–11]. Mapping genetic and epigenetic
changes in normal tissue at risk of neoplastic transformation is therefore
critically important for understanding oncogenesis, identifying early
causal drivers and for cancer risk prediction [12]. Although a number
of studies have been able to link somatic mutations and copy-number-
variants (CNVs) in whole blood to the future risk of hematological and
solid cancers [2,4–6,13,14], analogous results for somatic alterations in
the epithelial cell of origin of solid cancers have remained elusive. In-
deed, identifying somaticmutations in normal tissue is technically chal-
lenging [12,15,16], with only a couple of studies having been able to
associate epithelial cancer risk to somatic mutations in normal (epithe-
lial) tissue [17,18]. In contrast, DNAmethylation (DNAm) changes have
been correlated to cancer risk in blood [7,19–21], are frequently ob-
served in preneoplastic epithelial tissue [22–27], and in the context of

cervical smears have allowed prospective risk prediction of a high-
grade intraepithelial neoplasia independently of HPV status [25].

Two recent studies formally compared somatic mutations/CNVs to
DNAm changes in their ability to predict prospective risk of gastric
and esophageal cancer [17,18]. One study showed that DNAm changes
may be a better risk predictor than somatic mutations, specially for gas-
tric cancer [18], whilst the other study showed that both CNVs and
DNAm changes were better than somatic mutations at predicting pro-
gression of intestinal metaplasia to gastric cancer [17]. Thus, both stud-
ies underscore the importance of DNAm changes in carcinogenesis and
suggest that epigenetic alterationsmay be a bettermolecular cancer risk
predictor than genetic changes. However, despite these two studies, the
relative importance of genetic and epigenetic alterations for cancer risk
prediction remains unclear.

Here we decided to shed further light on this outstanding question.
Although comparing different types of molecular alteration as predic-
tors of cancer risk is technically challenging due to the requirement of
measuring all relevant molecular profiles in the relevant tissue and in
a relatively large number of individuals, several studies have shown
the feasibility of using Illumina Methylation 450 k/EPIC beadarrays to
obtain high-confidence CNV calls [28–30], thus allowing at least for an
objective comparison between CNV and DNAm. Here we conduct such
a comparison in the context of an epithelial cancer using a cohort of
50 normal healthy breast samples, 42 age-matched normal samples col-
lected adjacent to breast cancer, and a total of 305 invasive breast
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cancers (of which 42 were matched to the normal-adjacent ones), all
profiledwith Illumina 450k beadarrays [24]. Since cell type heterogene-
ity represents a major source of DNAm variation in a complex tissue
such as breast, we use recent state-of-the art statistical techniques to
rigorously adjust for this major confounder. Using these techniques, as
well as an independent validation, we demonstrate that DNAm changes
in normal cells are more predictive of breast cancer status than their
CNV counterparts.

2. Materials and Methods

2.1. Breast Cancer DNA Methylation Datasets

We analyzed 2 different normal breast and breast cancer tissue
datasets, both profiled with the same Illumina Infinium 450 k DNAm
technology. The Erlangen set was generated and analyzed by us previ-
ously [24], consisting of 50 normal healthy breast samples, 42 age-
matched normal-adjacent breast cancer pairs (84 samples in total),
and an additional 263 unmatched breast cancers. The clinical character-
istics and normalization of the DNAm dataset was described previously
[24]. The second “validation” dataset generated Illumina 450 k profiles
for 18 normal healthy (from breast reduction surgery) breast samples,
as well as 70 normal samples found adjacent to breast cancer [31].
Clinical characteristics and normalization of the Infinium data was
described by us previously [24,31].

2.2. Construction and Validation of a Reference DNA Methylation Database
for Breast Tissue

We aimed to build a reference DNAm database for breast tissue that
would allow us to estimate fractions of epithelial, adipocyte and
immune-cells from the DNAm profile of a sample, using the EpiDISH al-
gorithm [32]. To construct the reference database, we used 450 k data
representing human mammary epithelial cells (HMECs) from Lowe
et al. [33], adipocytes from Nazor et al. [34] and all 7 major immune cell
types (neutrophils, eosinophils, monocytes, CD4+ and CD8+ T-cells, B-
cells and NK-cells) from Reinius et al. [35]. These 450 k profiles were
used in conjunctionwith an empirical Bayes framework [36] to select dif-
ferentially methylated CpGs (DMCs) between all 9 cell types, demanding
FDR b 0.05 and at least 50% difference in average DNAm between cell
types. Cell type specific DMCs were filtered further by demanding that
they map to a DNase Hypersensitive Site (DHS), as determined by the
NIHEpigenomics Roadmap (if such cell type specificDHSdatawere avail-
able), following a procedure we used previously [32]. This resulted in a
reference matrix of 349 DMCs and 9 nine cell types. For an independent
sample, cell type fractions for the 9 cell types can be estimated using
EpiDISH (using the implementation with Robust Partial Correlations).

We performed three separate validations/tests to ensure that the
reference DNAm profiles are representative of epithelial, fat and
immune-cells. First, we collected Illumina 450 k data representing
these same cell types from independent studies: HMECs from ENCODE
[37], adipocytes and blood samples from Slieker et al. and [38]. We con-
structed 100 in-silico random mixtures of these 3 cell types and com-
pared estimated to true cell-fractions. Second, we applied the
reference DNAm profile database and EpiDISH to purified monocytes,
T-cells and B-cells from 50 monozygotic twin pairs [39], as this should
correctly predict zero fractions for epithelial and adipocytes and near
100% for blood cell types. Third, we applied the reference DNAm profile
database and EpiDISH to WGBS data of two IHEC samples enriched for
breast epithelial cells [40], as this should predict higher cell-fractions
for the epithelial component.

2.3. Identification of DNAm Field Defects

The procedure used to identify epigenetic field defects in normal-
adjacent breast tissue was described by us previously [24]. Briefly, we

used our iEVORA algorithm to identify differentially variable (DV) and
differentially methylated CpGs (DVMCs) between the 50 normal
healthy and 42 normal-adjacent samples. The iEVORA algorithm de-
mands genome-wide significance (after correction for multiple testing)
at the level of differential variance only, thus defining differentially var-
iable CpGs (DVCs), but subsequently re-ranks DVCs by a t-statistic, in
order to favor DVCs where the differential variance is driven by as
many outliers as possible. This re-ranking heuristic achieves a good
compromise between sensitivity and the type-1 error rate, as demon-
strated by us previously [41]. DVMCs were selected using a FDR thresh-
old of 0.001 for differential variability (P-values estimated using
Bartlett's DV test, whichwe stress can also be interpreted as a normality
deviation test) and a P-value threshold of 0.05 for the t-statistics. Subse-
quently, we restrict to hypervariable DVMCs, i.e. the subset exhibiting
increased variance in the normal-adjacent samples, as the underlying
hypothesis is that samples exhibiting deviations from the normal-
state represent those at higher risk of carcinogenic transformation.

An appealing feature of using differential variability statistics to
identify DNAm alterations in normal-adjacent samples compared to
healthy normals is that the resulting hyperV DVMCs are less likely to
be driven by changes in cell type composition compared to randomly
selected set of CpGs. To see this, we note that the use of the differential
variability statistic favors CpGs (hyperV DVMCs) that show ultra-stable
DNAm profiles across the normal healthy samples (i.e. very small vari-
ance), with outliers driving increased variance in the normal-adjacent
specimens. The ultra-high stability of DNAm across the normal healthy
samplesmeans that these CpGs are notmarkers of underlying cell types
(in breast these are mainly epithelial cells, adipocytes and immune
cells), since variations in the adipose, epithelial and immune cell frac-
tions dominate the top components of variation across normal samples
[24]. To prove the result formally, we used our EpiDISH algorithm [32]
and our reference DNAm database for breast tissue to estimate epithe-
lial, adipose and immune-cell fractions in all 50 normal samples from
healthy women, demonstrating that the top PC in a PCA correlated
with these fractions. We then derived CpGs correlating significantly
with the estimated epithelial and adipose fractions, thus defining “cell
type” DMCs (ctDMCs). We then compared how the previously selected
hyperV DVMCs ranked among the list of ctDMCs (i.e those CpGs corre-
lating most strongly with cell type composition) to demonstrate that
hyperV DVMCs are ranked significantly lower than a randomly selected
set of 10,000 non-DVMCs.We also compared the ranking of the hyperV
DVMCs to all non-DVMCs, which did not alter the conclusions.

2.4. CNV Calling Procedure

We used the following procedure to derive copy number alterations
for both the Erlangen and validation Illumina 450 k sets. First, idat files
were loaded, background-corrected and normalized using functions im-
plemented in theminfi package [42]. The returnedMethylSet objectwas
then used as input to the conumee package [43], to infer CNV states.
Briefly, conumee performs the inference in 3-steps: (i) background
corrected intensity values of the “methylated” and “unmethylated”
channels are added, and the log2-ratio of probe intensities of the
query sample (this includes any sample, be it normal, normal-adjacent
or cancer) to the average over all normal healthy samples is calculated,
(ii) themedian log2-ratio of probeswithin predefined genomic bins de-
fines the bin-intensity value, and the bin intensity values are then
shifted to minimize the median absolute deviation of all bin intensities
from zero to determine the copy-number neutral state, (iii) segmenta-
tion is performed using the circular binary segmentation (CBS) algo-
rithm implemented in the DNAcopy package [44]. For calling CN gain
or loss, we used sample-specific thresholds instead of the widely used
cutoffs (±0.1), in order to reduce the bias caused by cell type heteroge-
neity. The sample-specific threshold for CN gain/loss is determined au-
tomatically by analyzing the distribution of all shifted bin intensity
values. For normal-adjacent samples, the median of the log2 ratio
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