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The availability of increasing volumes of multi-omics profiles across many cancers promises to improve our un-
derstanding of the regulatory mechanisms underlying cancer. The main challenge is to integrate these multiple
levels of omics profiles and especially to analyze them across many cancers. Here we present AMARETTO, an al-
gorithm that addresses both challenges in three steps. First, AMARETTO identifies potential cancer driver genes
through integration of copy number, DNA methylation and gene expression data. Then AMARETTO connects
these driver genes with co-expressed target genes that they control, defined as regulatory modules. Thirdly,
we connect AMARETTOmodules identified from different cancer sites into a pancancer network to identify can-
cer driver genes. Herewe applied AMARETTO in a pancancer study comprising eleven cancer sites and confirmed
that AMARETTO captures hallmarks of cancer. We also demonstrated that AMARETTO enables the identification
of novel pancancer driver genes. In particular, our analysis led to the identification of pancancer driver genes of
smoking-induced cancers and ‘antiviral’ interferon-modulated innate immune response.
Software availability: AMARETTO is available as an R package at https://bitbucket.org/gevaertlab/
pancanceramaretto
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In the last two decades, advances in high-throughput experimental
technologies have produced an abundance of molecular data. An in-
creasing number of large multi-omics projects have launched and pro-
vide millions of data points for thousands of biological samples. For
example, The Cancer Genome Atlas (TCGA) project (Hoadley et al.,
2014; Cancer Genome Atlas Research Network, 2013; Yuan et al.,
2014) was launched to improve our ability to diagnose, treat and pre-
vent cancer and has produced an enormous amount of multi-omics
data. Interpreting these high dimensional datasets to identify novel can-
cer driver genes represents an outstanding challenge. True cancer driver
genes are those whose perturbation pushes a cell towards a malignant
phenotype. Within this study, we define cancer driver genes as genes
that fulfill all of the following criteria: (1) genes that are genetically

and/or epigenetically deregulated in cancer, (2) genes whose genetic
and epigenetic aberrations have a direct impact on their own functional
gene expression levels, and (3) genes that are predicted to play regula-
tory roles high in the causal hierarchy of the origin of tumors. These in-
clude, for example, transcription factors, cell cycle genes or epigenetic
modifying enzymes, whose altered state in cancer results in deregula-
tion of downstream target genes; as well as upstream signaling mole-
cules. They typically hide amongst a large number of passenger genes
that are only by chance genetically or epigenetically altered (Eifert
and Powers, 2012).

Previously, several computational methods have been developed to
integrate multi-omics data. For example, Ciriello et al. used a method
based on mutual exclusivity of copy number and mutation events to
identify driver genes in glioblastoma (Ciriello et al., 2012). Similarly,
Vandin et al. developed a method to identify driver genes in cancer,
but focused on finding pathwayswith a significant enrichment ofmutu-
ally exclusive genes (Vandin et al., 2012). In addition, Akavia et al. built
further on this work and used copy number data to identify potential
cancer driver genes in a modified Bayesian module network analysis
called CONEXIC (Akavia et al., 2010).More recently, other groups are fo-
cusing on identifying driver genes through network analysis of copy
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number data to identify potential drivers using a Bayesian module net-
work analysis (Ray et al., 2014).

We have previously developed AMARETTO, an algorithm that inte-
grates copy number, DNA methylation and gene expression data to
identify a set of driver genes altered by DNA methylation or DNA copy
number alterations, and constructs a gene expression network to con-
nect them to clusters of co-expressed genes, defined as modules
(Gevaert and Plevritis, 2013; Gevaert et al., 2013). These gene expres-
sion modules are subsequently ascribed biological pathways using
gene set enrichment analysis (GSEA), revealing the pathways affected
by cancer driver gene regulation. AMARETTO is thus a data driven path-
way approach, using genomic, epigenomics and transcriptomics data as
inputs, and produces modules and cancer driver genes associated with
these modules as output. Integration of epigenomics data is essential
to comprehensive analysis of cancer genomic analysis, as DNA methyl-
ation is a major mechanism of transcriptional deregulation in virtually
all cancers. For example, cancer driver genes such as BRCA1 and
MLH1,which are often altered bymutation in cancer, are also frequently
deregulated by DNA methylation in other patients, with similar down-
stream consequences (Simpkins et al., 1999; Das and Singal, 2004;
Catteau andMorris, 2002). Our data-driven pathwayapproach contrasts
with previouswork that relies upon use of known cancer pathways and
networks such as PARADIGM, an algorithm that uses human-curated
pathways and estimates their activity using DNA copy number and
mRNA expression data (Vaske et al., 2010).

Here, we present an extension of AMARETTO to a pancancer applica-
tion usingmulti-omics data of eleven cancer sites from TCGA. We show
that AMARETTO captures modules enriched in major pathways of can-
cers and modules that accurately predict molecular subtypes. Next, we
connect themodules of co-expressed genes in a pancancermodule net-
work. We show that this allows the identification of major oncogenic
pathways and cancer driver genes involved in multiple cancers. More
specifically, we identified a pancancer driver gene that is involved in
smoking induced cancers and a pancancer driver gene that is involved
in antiviral IFN modulated immune response. Overall, our results
show the potential of pancancermulti-omics data fusion to identify can-
cer drivers that are high within the causal hierarchy of cancer develop-
ment and associated with common pathways across different types of
tumors that eventually can lead to the identification of pancancer drug
targets. The AMARETTO algorithm and its pancancer application are
publicly available.

2. Materials and Methods

2.1. Data Preprocessing

We used gene expression, copy number and DNA methylation data
from TCGA for 11 cancer sites, namely bladder urothelial carcinoma
(BLCA), breast invasive carcinoma (BRCA), colon and rectal

adenocarcinoma (COADREAD), glioblastoma (GBM), head and neck
squamous cell carcinoma (HNSC), clear cell renal carcinoma (KIRC),
acute myeloid leukemia (LAML), lung adenocarcinoma (LUAD), lung
squamous cell carcinoma (LUSC), ovarian serous cystadenocarcinoma
(OV) and uterine corpus endometrial carcinoma (UCEC) (Table 1). All
data sets are available at the TCGA data portals.

The gene expression data were produced using Agilent microarrays
for GBM and OV cancers, and RNA sequencing for all other cancer
sites. Preprocessing was done by log-transformation and quantile nor-
malization of the arrays. The DNA methylation data were generated
using the Illumina Infinium Human Methylation 27 Bead Chip. DNA
methylation was quantified using β-values ranging from 0 to 1 accord-
ing to the DNA methylation levels. We removed CpG sites with more
than 10% of missing values in all samples. We used the 15-K nearest
neighbor algorithm to estimate the remaining missing values in the
data set (Troyanskaya et al., 2001). Finally, the copy number data we
used are produced by the Agilent Sure Print G3 Human CGHMicroarray
Kit 1Mx1M platform. This platform has high redundancy at the gene
level, but we observed high correlation between probes matching the
same gene. Therefore, probes matching the same gene were merged
by taking the average. For all data sources, gene annotation was trans-
lated to official gene symbols based on the HUGO Gene Nomenclature
Committee (version August 2012). TCGA samples are analyzed in
batches and significant batch effects were observed based on a one-
way analysis of variance in most datamodes.We applied Combat to ad-
just for these effects (Johnson et al., 2007).

2.2. AMARETTO: Multi-omics Data Fusion

Our approach for analyzing TCGA cancer data is based on AMA-
RETTO, a novel algorithmdevoted to constructmodules of co-expressed
genes through the integration of multi-omics data (Gevaert and
Plevritis, 2013; Gevaert et al., 2013). More precisely, AMARETTO is a
three-step algorithm that (i) identifies tumor specificDNA copy number
or DNA methylation changes, (ii) identifies a set of potential cancer
driver genes by integrating DNA copy number, DNA methylation and
gene expression data, (iii) connects these cancer driver genes to mod-
ules of co-expressed target genes that they control using a penalized
regulatory program. AMARETTO, consists of three steps (Fig. 1).

2.2.1. Step 1
Identification of candidate cancer driver genes with tumor-specific

DNA copy number or DNAmethylation alterations compared to normal
tissue: we first restrict the list of candidates to genes that have either
copy number or DNA methylation alterations. These alterations are de-
tected using the GISTIC (Taylor et al., 2008; Mermel et al., 2011) and
MethylMix (Gevaert, 2015; Gevaert et al., 2015) algorithms for copy
number and DNA methylation data respectively. GISTIC separately
models arm-level and focal alterations, identifying amplified and

Table 1
Number of samples and number of genes for each of the data modalities (gene expression, DNA copy number and DNA methylation) and for the eleven studied cancer sites.

TCGA cancer site TCGA cancer code Gene expression GISTIC MethylMix

Samples Genes Samples Genesa Samples Genesb

Bladder urothelial carcinoma BLCA 181 15.432 178 1.974 123 472
Breast invasive carcinoma BRCA 985 16.02 968 1.523 887 890
Colon and rectum adenocarcinoma COADREAD 589 15.533 578 2.523 570 522
Glioblastoma multiforme GBM 501 17.811 481 1.561 321 395
Head and neck squamous cell carcinoma HNSC 371 15.828 365 2.184 308 753
Kidney renal clear cell carcinoma KIRC 509 16.123 501 3.052 497 567
Acute myeloid leukemia LAML 173 14.296 166 1.681 170 613
Lung adenocarcinoma LUAD 489 16.092 487 3.585 367 678
Lung squamous cell carcinoma LUSC 490 16.219 487 2.592 355 679
Ovarian serous cystadenocarcinoma OV 541 17.814 528 1.499 540 510
Uterine corpus endometrial carcinoma UCEC 508 15.706 500 2.074 496 821

a Number of significant genes found after running GISTIC (data available in the TCGA data portal).
b Number of genes with significant methylation patterns identified using MethylMix.
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