A nonlinear equation in Banach spaces and applications to the well-posedness of Cauchy problems

P. Braz e Silva*, L. Ferreira, M. Loayza
Departamento de Matemática, Universidade Federal de Pernambuco, 50740-540 Recife, PE, Brazil

Received 23 August 2007; accepted 25 February 2008

Abstract

We analyze a nonlinear equation in Banach spaces, with the nonlinearity composed of multiple terms of different degrees. We prove a theorem regarding the existence of solutions for such equations. Moreover, we show how this result may be applied to obtain the well-posedness of various parabolic initial value problems.

(C) 2008 Elsevier Ltd. All rights reserved.

MSC: 35A07; 35K55
Keywords: Well-posedness; Parabolic equations; Cauchy problems

1. Introduction

Let X be a Banach space with norm $\|\cdot\|$. Given $y \in X$, and the operators $T: X \rightarrow X$, and $S_{i}: X \rightarrow X, 1 \leq i \leq m$, consider the equation

$$
\begin{equation*}
x=y+\sum_{i=1}^{m} S_{i}(x)+T(x) \tag{1}
\end{equation*}
$$

We prove that under suitable conditions Eq. (1) is locally uniquely solvable. Moreover, we show that this result may be used to obtain the well-posedness of various initial value problems for parabolic equations in suitable spaces. More specifically, in Section 3 we derive bounds which allow one to get well-posedness for semilinear parabolic systems and for convection-diffusion equations. Moreover, we also use some known estimates to study other equations, such as the semilinear heat equations and the Navier-Stokes equations.

When necessary, we will denote the norm in a given Banach space X by $\|\cdot\|_{X}$. For $r>0$, we write by $B_{r}:=\{x \in X ;\|x\| \leq r\}$. For each Lebesgue measurable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the rearrangement f^{*} and the average function $f^{* *}$ are, respectively, defined by

$$
f^{*}(t)=\inf _{s>0}\left\{\mu\left(\left\{x \in \mathbb{R}^{n} ;|f(x)|>s\right\}\right) \leq t\right\}, \quad t>0
$$

[^0]$$
f^{* *}(t)=\frac{1}{t} \int_{0}^{t} f^{*}(s) \mathrm{d} s, \quad t>0,
$$
where μ is the \mathbb{R}^{n}-Lebesgue measure. The Lorentz space $L^{(p, q)}\left(\mathbb{R}^{n}\right) \equiv L^{(p, q)}$ consists of all measurable functions f such that $\|f\|_{(p, q)}<\infty$, where
\[

\|f\|_{(p, q)}= $$
\begin{cases}\left(\frac{q}{p} \int_{0}^{\infty}\left[t^{\frac{1}{p}} f^{* *}(t)\right]^{q} \mathrm{~d} t / t\right)^{\frac{1}{q}}, & \text { if } 1<p<\infty, 1 \leq q<\infty, \\ \sup _{t>0} t^{\frac{1}{p}} f^{* *}(t), & \text { if } 1<p \leq \infty, q=\infty\end{cases}
$$
\]

We observe that $L^{p}\left(\mathbb{R}^{n}\right)=L^{(p, p)}\left(\mathbb{R}^{n}\right)$ and $L^{\left(p, q_{1}\right)}\left(\mathbb{R}^{n}\right) \subset L^{\left(p, q_{2}\right)}\left(\mathbb{R}^{n}\right)$, for $q_{1} \leq q_{2}$, with a continuous injection. The Lorentz spaces can be constructed via the real interpolation

$$
L^{(p, q)}\left(\mathbb{R}^{n}\right)=\left(L^{1}\left(\mathbb{R}^{n}\right), L^{\infty}\left(\mathbb{R}^{n}\right)\right)_{1-\frac{1}{p}, q}, \quad 1<p<\infty
$$

Moreover, they have the interpolation property

$$
\left(L^{\left(p_{0}, q_{0}\right)}\left(\mathbb{R}^{n}\right), L^{\left(p_{1}, q_{1}\right)}\left(\mathbb{R}^{n}\right)\right)_{\theta, q}=L^{(p, q)}\left(\mathbb{R}^{n}\right),
$$

provided $1<p_{0}<p_{1}<\infty, 0<\theta<1, \frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}, 1 \leq q_{0}, q_{1}, q \leq \infty$. The space $L^{(p, \infty)}$ is called the Marcinkiewicz space or Weak- L^{p}. We will also make use of $P M^{a}$ spaces

$$
P M^{a}:=\left\{v \in S^{\prime}: \hat{v} \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right),\|v\|_{P M^{a}}^{\equiv} \underset{\xi \in \mathbb{R}^{n}}{\left.\operatorname{ess} \sup |\xi|^{a}|\hat{v}(\xi)|<\infty\right\}, ~}\right.
$$

where $a \geq 0$. For more details on these functional spaces see, for instance, [1,7,12,14].

2. An equation in Banach spaces

The following theorem generalizes the results in [3] (Lemmas 3 and 8) and in [12] (Theorem 13.2). The proof is based on the standard Picard iteration technique together with the Banach fixed point theorem. In what follows, X denotes a Banach space with norm $\|\cdot\|$. For X and Y Banach spaces, we refer to the Banach space $X \cap Y$ in the usual context, that is, when X and Y are embedded in the same topological vector space, and $X \cap Y$ is Banach with respect to the sum or maximum norm.

Theorem 2.1. Let $m \in \mathbb{N}$ and, for each $1<i<m$, let $\rho_{i} \in(1, \infty)$ and $K_{i}>0$. Suppose $T: X \rightarrow X$ to be a linear continuous map satisfying

$$
\begin{equation*}
\|T(x)-T(z)\| \leq \tau\|x-z\|, \quad \forall x, z \in X \tag{2}
\end{equation*}
$$

for a fixed $\tau<1$. For each $1<i<m$, let $S_{i}: X \rightarrow X$ be a map satisfying

$$
\begin{equation*}
\left\|S_{i}(x)-S_{i}(z)\right\| \leq K_{i}\|x-z\|\left(\|x\|^{\rho_{i}-1}+\|z\|^{\rho_{i}-1}\right) \tag{3}
\end{equation*}
$$

for all $x, z \in X$. Let $R>0$ be the least positive root of equation $\sum_{i=1}^{m} \frac{2^{\rho_{i}} K_{i}}{(1-\tau)^{\rho_{i}-1}} R^{\rho_{i}-1}+\tau-1=0$. We have:

1. (Existence and Uniqueness). Given $0<\varepsilon<R$, if $y \in X$ is such that $\|y\| \leq \varepsilon$, then there exists a solution $x \in X$ of the equation

$$
\begin{equation*}
x=y+\sum_{i=1}^{m} S_{i}(x)+T(x), \tag{4}
\end{equation*}
$$

satisfying $\|x\| \leq \frac{2 \varepsilon}{1-\tau}$. The solution x is unique in the ball $B_{\frac{2 \varepsilon}{1-\tau}}$.

https://daneshyari.com/en/article/843778

Download Persian Version:

https://daneshyari.com/article/843778

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: pablo@dmat.ufpe.br (P. Braz e Silva), lcff@dmat.ufpe.br (L. Ferreira), miguel@dmat.ufpe.br (M. Loayza).

