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Abstract

We study global well-posedness and regularity of solutions for a family of incompressible three-
dimensional Navier–Stokes-alpha-like models that employ fractional Laplacian operators. This family of
equations depends on two parameters, θ1 and θ2, which affect the strength of non-linearity (vorticity
stretching) and the degree of viscous smoothing. Varying θ1 and θ2 interpolates between the incompressible
Navier–Stokes equations and the incompressible (Lagrangian averaged) Navier–Stokes-α model. Our main
result, which contains previously established results of J.L. Lions and others, provides a relationship
between θ1 and θ2 that is sufficient to guarantee global existence, uniqueness and regularity of solutions.
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1. Introduction

Numerical solution of the Navier–Stokes equations for problems of engineering and
geophysical relevance is not possible at present—even on the most powerful computers (see,
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e.g., [20,49]). Moreover, the mathematical theory for global existence and regularity of solutions
to these equations is one of the most challenging open questions of mathematical analysis
[17]. In turbulent fluid flows, most of the kinetic energy lies in the large scales, whereas
the mathematical and computational difficulties lie in understanding the dynamical interaction
between the significantly wide range of relevant scales in this multiscale phenomenon. To
overcome this obstacle much effort is being made to produce reliable turbulence models which
parameterize the effect of the active small scales in terms of the large scales.

Over the last years, the viscous Camassa–Holm equations have been proposed as a subgrid
turbulence model: the (Lagrangian averaged) Navier–Stokes-α or LANS-α model. Physical
derivations of the inviscid version of this model were proposed in Holm et al. [32], Holm
[29] and in [10]. The inviscid version of this model also appears in the context of the non-
Newtonian second grade fluids (see, for example, Dunn and Rajagopal [21], Joseph [36] and
references therein). Adding an ad hoc viscous dissipation term, as proposed in [9–11,24], one
reaches the viscous Camassa–Holm equations, also known as the LANS-α or Navier–Stokes-
α model. This model was used in [9–11] as a closure model for the Reynolds averaged
Navier–Stokes equations, and it was tested successfully against experimental measurements and
direct numerical simulations of turbulent channel and pipe flows. Recently, it has been observed
that an identical closure for the Reynolds equations may be obtained from the Leray-α model
[14,35], the Clark-α model [8] and the Brandina model [15]. It is worth mentioning that one
also obtains a similar set of reduced equations in channels and pipes when applying multipolar
viscous fluid models (see, for example, Bellout et al. [5]). Cheskidov [13] and Holm et al.
[34] used this model to obtain an extension of the Prandtl equations for the averaged flow in
a turbulent boundary layer. Chen et al. [12] observed through direct numerical simulations that
the energy spectra of the LANS-α model decay faster than k−5/3 for wave numbers k � 1/α.
A more refined scaling argument in [23] indicates that the translational kinetic energy spectrum
should scale as ε2/3

α k−5/3(1 + α2k2)−2/3. Furthermore, Holm [30] showed that the LANS-α
model possesses a Kármán–Howarth theorem consistent with these scalings. In addition, the
LANS-α model enjoys a finite dimensional global attractor with an analytical upper bound
on its fractal dimension that scales consistently with heuristic arguments for extensive three-
dimensional turbulence, that is, as (L/ ld )

3. The history of the LANS-α model and information
regarding its use as a subgrid scale turbulence model have been summarized by Holm et al.
in [31]. Similar results have also been obtained for the Leray-α model [14] and the Clark-α
model [8], with respective energy spectrum scalings of (εLeray)

2/3k−5/3(1 + α2k2)−(n−6)/3 and
(εClark)

2/3k−5/3(1+α2k2)−(n−4)/3 where n is an integer between 0 and 2 inclusive that indicates
how the average velocity of an eddy of length k−1 is computed. The Clark-αmodel also possesses
a finite dimensional global attractor scaling as (L/ ld )

3, whereas the Leray-α model possess
an attractor with bounds scaling as (L/ ld)

12/7, somewhere between one- and two-dimensional
turbulence. Related models may be found in [15,35]. Note also the numerical work [27,28] of
Holm and Guerts concerning the Leray-α model and the approximation of trajectory attractors
of the Navier–Stokes equations as α → 0 in [57].

Not only does the LANS-α model have useful computational properties, but, as shown in
[24], the mathematical theory of global existence and uniqueness of solutions for this model
is complete. In this paper we consider a family of equations which interpolates between the
Navier–Stokes equations and the LANS-α model and look for the limiting cases where we can
prove global existence and uniqueness of regular solutions.

Let θ1 and θ2 be two non-negative parameters. The family of equations we shall consider have
the form
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