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Existence of periodic solutions to a p-Laplacian Liénard differential
equation with a deviating argumentI

Shiping Lu∗

Department of Mathematics, Anhui Normal University, Wuhu 241000, Anhui, PR China

Received 6 August 2006; accepted 19 December 2006

Abstract

By means of Mawhin’s continuation theorem, a kind of p-Laplacian Liénard differential equation with a deviating argument as
follows:

(φp(y′(t)))′ = f (y(t))y′(t) + h(y(t)) + g(y(t − τ(t))) + e(t)

is studied. A new result on the existence of periodic solutions is obtained. The interest is that the relation between the existence of
periodic solutions and the deviating argument τ(t) is investigated. Meanwhile, the approaches used to estimate a priori bounds of
periodic solutions are different from the corresponding ones in the known literature.
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1. Introduction

As is well known, the existence of periodic solutions to some second-order differential equations has been
extensively studied [1–4]. In recent years, some researchers have investigated the problem of the existence of periodic
solution to some differential equations involving the p-Laplacian or diffusion terms; see [5–12] and the references
therein. For example, by using Mawhin’s continuation theorem, Cheung and Ren studied the existence of T -periodic
solutions to a p-Laplacian Liénard equation with a deviating argument in [5] as follows:

(ϕp(x ′(t)))′ + f (x(t))x ′(t) + g(x(t − τ(t))) = e(t),

and two results (Theorem 3.1 and Theorem 3.2 in [5]) on the existence of periodic solutions were obtained. The
conditions imposed on f (x) and g(x) were ones such as:
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[C1] There is a constant d > 0 such that ug(u) does not change sign for |u| > d.
[C2] There is a constant l > 0 such that

|g(u1) − g(u2)| ≤ l|u1 − u2| ∀u1, u2 ∈ R.

[C3] There is a constant σ > 0 such that | f (s)| ≥ σ, ∀s ∈ R.

Clearly, condition [C2] implies

lim
|u|→+∞

|g(u)|

|u|
= lim

|u|→+∞

|g(u) − g(0) + g(0)|

|u|
≤ l. (1.1)

The aim of this paper is to study the existence of periodic solutions to a class of p-Laplacian Liénard equations
with a deviating argument as follows:

(ϕp(y′(t)))′ + f (y(t))y′(t) + h(y(t)) + g(y(t − τ(t))) = e(t), (1.2)

where p > 1 is a constant, ϕp : R → R, ϕp(u) = |u|
p−2u, f, g, e, τ ∈ C(R, R) with τ(t + T ) ≡ τ(t) and

e(t + T ) ≡ e(t), T > 0 is a given constant. Such equations are derived from many fields, such as fluid mechanics and
nonlinear elastic mechanics. The significance of this paper is that the main result is related to the deviating argument
τ(t), and the methods used to estimate a priori bounds of periodic solutions are different from the corresponding
ones in [1–5,10]. Furthermore, even for the case of h(x) ≡ 0, the conditions imposed on f (x) and g(x) are different
from the corresponding ones in [5]. For example, we only require that the function f (x) is continuous on R, which is
weaker than condition [C3]; and also the growth condition imposed on g(x) is

lim
|u|→+∞

|g(u)|

|u|p−1 ≤ r ∈ [0, +∞). (1.3)

Obviously, if p ≥ 2, one can find from (1.1) that condition (1.3) is weaker than condition [C2].

2. Main lemmas

The following lemma is crucial for investigating the relation between the existence of periodic solutions to
Eq. (1.2) and the deviating argument τ(t).

Lemma 2.1 ([13]). Let p ∈ (1, +∞) be a constant, s ∈ C(R, R) such that s(t + T ) ≡ s(t), u ∈ C1(R, R) with
u(t + T ) ≡ u(t). Then∫ T

0
|u(t) − u(t − s(t))|pdt ≤ 2

(
max

t∈[0,T ]

|s(t)|

)p ∫ T

0
|u′(t)|pdt.

Lemma 2.2 ([14]). Let s, σ ∈ C(R, R) with s(t +T ) ≡ s(t) and σ(t +T ) ≡ σ(t). Suppose that the function t −σ(t)
has a unique inverse µ(t), ∀t ∈ R. Then s(µ(t + T )) ≡ s(µ(t)).

Now, we recall Mawhin’s continuation theorem which our study is based upon.
Let X and Y be real Banach spaces and L : D(L) ⊂ X → Y be a Fredholm operator with index 0; here D(L)

denotes the domain of L . This means that Im L is closed in Y and dim ker L = dim(Y/Im L) < +∞. Consider the
supplementary subspaces X1 and Y1 such that X = ker L ⊕ X1 and Y = Im L ⊕ Y1 and let P : X → ker L and
Q : Y → Y1 be the natural projections. Clearly, ker L ∩ (D(L) ∩ X1) = {0}; thus the restriction L P := L|D(L)∩X1 is
invertible. Denote by K the inverse of L P .

Now, let Ω be an open bounded subset of X with D(L) ∩ Ω 6= φ. A map N : Ω → Y is said to be L-compact in
Ω if QN (Ω) is bounded and the operator K (I − Q)N : Ω → X is compact.

Lemma 2.3 ([15]). Suppose that X and Y are two Banach spaces, and L : D(L) ⊂ X → Y is a Fredholm operator
with index 0. Furthermore, Ω ⊂ X is an open bounded set and N : Ω → Y is L-compact on Ω . If:

(1) Lx 6= λN x, ∀x ∈ ∂Ω ∩ D(L), λ ∈ (0, 1);
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