

Available online at www.sciencedirect.com

Nonlinear Analysis 69 (2008) 2049-2057

www.elsevier.com/locate/na

An existence theorem for weak solutions for a class of elliptic partial differential systems in general Orlicz–Sobolev spaces

Ge Dong

Department of Mathematics, Shanghai University, Shanghai 200444, China

Received 11 March 2007; accepted 24 July 2007

Abstract

I prove the existence of a weak solution for the Dirichlet problem of a class of elliptic partial differential systems $-\frac{\partial A_{\alpha}^{i}}{\partial x^{\alpha}}(x, u(x), Du(x)) + B^{i}(x, u(x), Du(x)) = 0$ in general Orlicz–Sobolev spaces $W_{0}^{1}L_{M}(\Omega, \mathbb{R}^{N})$, where $i = 1, ..., N, \alpha = 1, ..., n, u : \Omega \to \mathbb{R}^{N}$ is a vector-valued function, and the summation convention is used throughout with i, j running from 1 to N and α, β running from 1 to n.

© 2007 Elsevier Ltd. All rights reserved.

MSC: 35J50; 35J55; 35J60

Keywords: Elliptic partial differential system; Dirichlet problem; Weak solutions; Orlicz spaces

1. Introduction

Let $\Omega \subset \mathbb{R}^n$ be a bounded Lipschitz domain. Fu, Dong and Yan [4] study the weak solution of the Dirichlet problem

$$-\frac{\partial A_{\alpha}^{i}}{\partial x^{\alpha}}(x, u(x), \mathsf{D}u(x)) + B^{i}(x, u(x), \mathsf{D}u(x)) = 0, \quad x \in \Omega,$$

$$u^{i}(x) = 0, \quad x \in \partial\Omega,$$
(1.1)
(1.2)

in separably reflexive Orlicz–Sobolev spaces $W_0^1 L_M(\Omega, \mathbb{R}^N)$, where $u : \Omega \to \mathbb{R}^N$ is a vector-valued function, and the summation convention is used throughout with *i*, *j* running from 1 to *N* and α, β running from 1 to *n*; *M* and \overline{M} are a pair of complementary *N*-functions.

A simple case of (1.1) is the Euler–Lagrange system.

Dong and Shi [3] prove the existence for the weak solutions of (1.1) and (1.2) in separable Orlicz–Sobolev spaces $W_0^1 L_M(\Omega, \mathbb{R}^N)$, but the result is restricted to N-functions M satisfying a Δ_2 -condition.

It is our purpose in this paper to extend the result of [3] to general N-functions (i.e. without assuming a Δ_2 condition on M).

E-mail address: dongge97@sina.com.

⁰³⁶²⁻⁵⁴⁶X/\$ - see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2007.07.043

2. Preliminaries

Let $M : R \to R$ be an *N*-function, i.e. *M* is even, convex, $M(u)/u \to 0$ as $u \to 0$, and $M(u)/u \to \infty$ as $u \to \infty$. \overline{M} is its complementary function. ϕ and ψ are their right-hand derivatives, respectively. The *N*-function *M* is said to satisfy the Δ_2 condition near infinity ($M \in \Delta_2$) if for some K > 0 and $\overline{u} > 0$,

$$M(2u) \le KM(u), \quad \forall u \ge \bar{u}. \tag{2.1}$$

Let P be an N-function. $P \ll M$ means that P grows essentially faster than M; that is for each k > 0, $P(kt)/M(t) \to 0$ as $t \to \infty$. This is the case if and only if $M^{-1}(t)/P^{-1}(t) \to 0$ as $t \to \infty$.

Let Ω be a bounded domain in \mathbb{R}^n , $u: \Omega \to \mathbb{R}^N$ be a vector-valued function. Its module is introduced by

$$\rho_M(u) = \int_{\Omega} M(|u(x)|) \mathrm{d}x.$$

The class $W^1L_M(\Omega, \mathbb{R}^N)$ (resp., $W^1E_M(\Omega, \mathbb{R}^N)$) consists of all functions u such that u and its distributional derivatives up to order 1 lie in $L_M(\Omega, \mathbb{R}^N)$ (resp., $E_M(\Omega, \mathbb{R}^N)$). The Orlicz space $L_M(\Omega, \mathbb{R}^N)$ is endowed with the Luxemburg norm

$$||u||_{(M)} = \inf \left\{ \lambda > 0; \int_{\Omega} M\left(\frac{|u(x)|}{\lambda}\right) \mathrm{d}x \le 1 \right\},$$

or the Orlicz norm

$$\|u\|_{M} = \inf_{k>0} \frac{1}{k} \left\{ 1 + \int_{\Omega} M(k|u(x)|) dx \right\}.$$

Then $||u||_{(M)} \le ||u||_M \le 2||u||_{(M)}$ (e.g. inequality (9.24) in [7]). The class $W^1 L_M(\Omega, \mathbb{R}^N)$ of such functions may be given a norm

$$||u||_{M,\Omega} = \sum_{|\alpha| \le 1} ||D^{\alpha}u||_{(M)}.$$

It is a Banach space under this norm, referred to as Orlicz–Sobolev space. Thus $W^1L_M(\Omega, \mathbb{R}^N)$ and $W^1E_M(\Omega, \mathbb{R}^N)$ can be identified with subspaces of the product of n + 1 copies of $L_M(\Omega, \mathbb{R}^N)$. Denoting this product by ΠL_M , we will use the weak topologies $\sigma(\Pi L_M, \Pi E_{\tilde{M}})$ and $\sigma(\Pi L_M, \Pi L_{\tilde{M}})$.

The space $W_0^1 E_M(\Omega, \mathbb{R}^N)$ is defined as the (norm) closure of $C_0^{\infty}(\Omega, \mathbb{R}^N)$ in $W^1 E_M(\Omega, \mathbb{R}^N)$ and the space $W_0^1 L_M(\Omega, \mathbb{R}^N)$ as the $\sigma(\Pi L_M, \Pi E_{\tilde{M}})$ closure of $C_0^{\infty}(\Omega, \mathbb{R}^N)$ in $W^1 L_M(\Omega, \mathbb{R}^N)$.

We say that u_n converges to u for the modular convergence in $W^1L_M(\Omega)$ if for some $\lambda > 0$,

$$\int_{\Omega} M\left(\frac{|D^{\alpha}u_n - D^{\alpha}u|}{\lambda}\right) \to 0, \quad \forall |\alpha| \le 1.$$
(2.2)

Definition 2.1. A function $f : \mathbb{R}^n \times \mathbb{R}^N \times \mathbb{R}^{Nn} \to \mathbb{R}$ is called a Caratheodory function if it satisfies: $\forall (s, p) \in \mathbb{R}^N \times \mathbb{R}^{Nn}, x \to f(x, s, p)$ is measurable; for almost every $x \in \mathbb{R}^n$, $(s, p) \to f(x, s, p)$ is continuous.

Lemma 2.1 (*Lieberman* [10]). For all $u \in W_0^1 L_M(\Omega)$,

$$\int_{\Omega} M(K^*|u|) \mathrm{d}x \le \int_{\Omega} M(|\mathrm{D}u|) \mathrm{d}x$$

where $K^* = 1/\text{diam } \Omega$ and $\text{diam } \Omega$ is the diameter of Ω .

Lemma 2.1 is referred to as Lemma 2.2 in [10].

Definition 2.2. Let $V_n = \text{Span}\{\omega_1, \dots, \omega_n\}$; then $u_n \in V_n$ is called a Galerkin solution of A(u) = f in V_n if and only if

 $(A(u_n), v) = (f, v) \quad \forall v \in V_n.$

Download English Version:

https://daneshyari.com/en/article/843903

Download Persian Version:

https://daneshyari.com/article/843903

Daneshyari.com