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Existence of a solution to Hartree–Fock equations with decreasing
magnetic fields
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Abstract

In the presence of an external magnetic field, we prove existence of a ground state within the Hartree–Fock theory of atoms
and molecules. The ground state exists provided the magnetic field decreases at infinity and the total charge Z of K nuclei exceeds
N − 1, where N is the number of electrons. In the opposite direction, no ground state exists if N > 2Z + K .
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1. Introduction

In this paper, the existence of a solution in the form of a minimizer is established for the nonlinear coupled
Hartree–Fock equations of Quantum Chemistry in the presence of an external magnetic field.

Within the Born–Oppenheimer approximation, the nonrelativistic quantum energy of N electrons interacting
with K static nuclei with charges Z = (Z1, . . . , Z K ), Zk > 0, and an external magnetic field B = ∇ × A,
A = (A1, A2, A3) : R3

→ R3 being the vector potential, is given by

EQM
N (Ψe) = 〈Ψe, HN ,Z,AΨe〉L2(R3N )

=

N∑
n=1

∫
R3N

(
|∇A,xn Ψe(x)|

2
+ Ven(xn)|Ψe(x)|

2
)

dx +

∑
1≤m<n≤N

∫
R3N

Vee(xm − xn)|Ψe(x)|
2dx, (1.1)

where x = (x1, . . . , xN ) ∈ R3N , xn = (x (1)n , x (2)n , x (3)n ) ∈ R3 being the position of the nth electron, the components of
the magnetic gradient ∇A,xn = (P(1)xn , P(2)xn , P(3)xn ) are P(m)xn = P(m)A,xn

= ∂
x (m)n

+ iAm(xn), Ven is the Coulomb potential

Ven(y) = −

K∑
k=1

Zk

|y − Rk |
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with Rk ∈ R3 being the position of the kth nucleus, Vee(x) = 1/|x |, and HN ,Z,A is the N -particle electronic
Schrödinger operator

HN ,Z,A =

N∑
n=1

(
−1A,xn + Ven(xn)

)
+

∑
1≤m<n≤N

Vee(xm − xn)

with 1A,xn =
∑3

m=1(P
(m)
xn )2 being the magnetic Laplacian. The interpretation of this Hamiltonian1 is as follows: the

first term corresponds to the kinetic energy of the electrons, the second term is the one-particle attractive interaction
between the electrons and the nuclei, and the third term is the standard two-particle repulsive interaction between the
electrons.

The wave function Ψe in (1.1) belongs to He :=
∧N H1

A(R
3
; C2), i.e., the N -particle Hilbert space consisting of

antisymmetric functions (expressing the Pauli exclusion principle)

Ψe(x1, . . . , xN ) = sign(σ )Ψe(xσ(1), . . . , xσ(N )) a.e. , ∀σ ∈ SN ,

where SN is the group of permutations of {1, . . . , N }, with the signature of a permutation σ being denoted by sign(σ ).
The space H1

A(R
3) is the “magnetic” analogue of the standard Sobolev space H1(R3); see Section 2 for its definition.

Poincaré’s Lemma (see, e.g., [10]) asserts that the magnetic field strength B is described by a 2-form

B(x) =

3∑
l,m=1,l<m

Flm(x)dxl ∧ dxm (1.2)

satisfying dB = 0 (exterior derivative) and, consequently, B = dA, or

Flm(x) =
∂Al(x)

∂xm
−
∂Am(x)

∂xl
(1.3)

with the magnetic vector potential (1-form) A(x) =
∑3

m=1 Amdxm . Since the vector potential is not directly
observable, we should impose conditions on the field strengths.

We choose the Poincaré gauge, x ·A(x) = A(x) · x = 0. It is well-known that

Am(x) :=

3∑
l=1

∫ 1

0
ξFlm(ξ x)dξ xl , m = 1, 2, 3, (1.4)

defines a vector potential which satisfies the Poincaré gauge. For this choice, divA =
∑3

m=1 ∂m Am(x) is a physical
quantity and we shall impose the following conditions on it; in a different context, rather similar requirements are
imposed in [5,2].

Assumption 1.1. (i) divA ∈ L2
loc(R

3).
(ii) divA is −1-bounded with relative bound less than one.

(See, e.g., [4, Definition III.7.1].)
(iii) Smallness at infinity:∥∥∥divA(−1+ 1)−1χ̃(|x | > R)

∥∥∥
B(L2)

∈ L1(R+, dR).

(See Section 2 for the meaning of χ̃ .)
(iv) A is homogeneous of degree −1.

The hypotheses on the field strength Flm and
∑3

l=1 Flm(x) xm are summarized in the following, where we set
Flm = Fb

lm + F s
lm , with Fb

lm , resp., F s
lm being associated with a bounded, resp. singular, part of Flm .

1 Expressed in Rydberg units.
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