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Existence of a solution to Hartree—Fock equations with decreasing
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Abstract

In the presence of an external magnetic field, we prove existence of a ground state within the Hartree—Fock theory of atoms
and molecules. The ground state exists provided the magnetic field decreases at infinity and the total charge Z of K nuclei exceeds
N — 1, where N is the number of electrons. In the opposite direction, no ground state exists if N > 2Z + K.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper, the existence of a solution in the form of a minimizer is established for the nonlinear coupled
Hartree—Fock equations of Quantum Chemistry in the presence of an external magnetic field.

Within the Born—Oppenheimer approximation, the nonrelativistic quantum energy of N electrons interacting
with K static nuclei with charges Z = (Zy,...,Zg), Zx > 0, and an external magnetic field B = V x A,
A= (A1, A, A3) : R?® — R3 being the vector potential, is given by

M
EVN(W) = (We, Hy 724 W) 2o

N
=3 [ (19 TP 4 Ve 0P @+ 37 [ Vit =l e Pax, (L)
— JrN R3N

1<m<n<N

(1)’ x}?)

where x = (x1,...,xn) € R33N x, = (xn ,x,(,3)) eR3 being the position of the nth electron, the components of

the magnetic gradient V 4 , = (P)gl), Px(f), P)gf)) are Px(:l") =P (m))c = 8X<m) + 1A, (x3), Ven is the Coulomb potential
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with R, € R? being the position of the kth nucleus, V,.(x) = 1/|x|, and Hy z 4 is the N-particle electronic
Schrodinger operator

N
HN,Z,.A = Z (_A.A,x,l + Ven(xn)) + Z Vee(Xm — Xn)
n=1

l1<m<n<N

with A 4, = an:l (PJE,:"))2 being the magnetic Laplacian. The interpretation of this Hamiltonian' is as follows: the

first term corresponds to the kinetic energy of the electrons, the second term is the one-particle attractive interaction
between the electrons and the nuclei, and the third term is the standard two-particle repulsive interaction between the
electrons.

The wave function ¥, in (1.1) belongs to H, = /\N HL\(R3; C?), i.e., the N-particle Hilbert space consisting of
antisymmetric functions (expressing the Pauli exclusion principle)

We(xl, ey xN) = sign(a) !pe(.xO'(l), ey xO'(N)) ae., VYoe SN,

where Sy is the group of permutations of {1, ..., N}, with the signature of a permutation o being denoted by sign(o).
The space HIA(R3) is the “magnetic” analogue of the standard Sobolev space H' (R3); see Section 2 for its definition.
Poincaré’s Lemma (see, e.g., [10]) asserts that the magnetic field strength B is described by a 2-form

3
B(x) = Z Fim (x)dx; A dxp (1.2)

I,m=1,l<m

satisfying dB = 0 (exterior derivative) and, consequently, B = dA, or

A1(x)  dAm(x)
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with the magnetic vector potential (1-form) A(x) = 2,3”:1 Apmdx,. Since the vector potential is not directly

observable, we should impose conditions on the field strengths.
We choose the Poincaré gauge, x - A(x) = A(x) - x = 0. It is well-known that

3 1

An(x) =" / EFimENdEx;, m=1,2,3, (1.4)
=170

defines a vector potential which satisfies the Poincaré gauge. For this choice, div.A = 231: 1 9mAp (x) is a physical
quantity and we shall impose the following conditions on it; in a different context, rather similar requirements are
imposed in [5,2].
Assumption 1.1. (i) divA € leoc(R3).
(ii) div.A is —A-bounded with relative bound less than one.

(See, e.g., [4, Definition II1.7.1].)
(iii)) Smallness at infinity:

HdivA(—A F )5 (x> R)HB( e L'R.,dR).
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(See Section 2 for the meaning of X.)
(iv) A is homogeneous of degree —1.

The hypotheses on the field strength F;,, and 213: 1 Fim(x) xp, are summarized in the following, where we set
Fim = ]—'ﬁn + F° , with F? | resp., F}, being associated with a bounded, resp. singular, part of F,.
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1 Expressed in Rydberg units.
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