Available online at www.sciencedirect.com # **ScienceDirect** journal homepage: www.ejcancer.com ## Original Research # Aflatoxin B_1 exposure increases the risk of hepatocellular carcinoma associated with hepatitis C virus infection or alcohol consumption Yu-Ju Chu ^{a,b}, Hwai-I Yang ^b, Hui-Chen Wu ^c, Mei-Hsuan Lee ^d, Jessica Liu ^b, Li-Yu Wang ^e, Sheng-Nan Lu ^f, Chin-Lan Jen ^b, San-Lin You ^g, Regina M. Santella ^c, Chien-Jen Chen ^{b,*} Received 29 November 2017; received in revised form 2 February 2018; accepted 7 February 2018 #### KEYWORDS Aflatoxin B₁; Albumin adducts; HCC; HCV infection; Habitual alcohol drinking **Abstract** *Background:* Hepatocarcinogenicity of aflatoxin B_1 (AFB₁) has rarely been studied in populations with hepatitis C virus (HCV) infection and those without hepatitis B virus (HBV) and HCV infection (non-B-non-C). This case-control study nested in a community-based cohort aimed to investigate the HCC risk associated with AFB₁ in HCV-infected and non-B-non-C participants. *Methods:* Baseline serum AFB₁-albumin adduct levels were measured in 100 HCC cases and 1767 controls seronegative for anti-HCV and HBsAg (non-B-non-C), and another 103 HCC cases and 176 controls who were anti-HCV-seropositive and HBsAg-seronegative. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were estimated using logistic regression. ^a Institute of Microbiology and Immunology, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan ^b Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan ^c Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 630 West 168th St, New York, NY, 10032, USA d Institute of Clinical Medicine, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan ^e Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd., Sanzhi Dist., New Taipei City, 252, Taiwan ^f Division of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta Pei Road, Niao Sung Dist., Kaohsiung, 833, Taiwan ^g School of Medicine & Big Data Research Center, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 242, Taiwan ^{*} Corresponding author: Genomics Research Center, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan. Fax: +886 2 2789 8811. E-mail addresses: lulululuchu@gmail.com (Y.-J. Chu), hwaii.yang@gmail.com (H.-I. Yang), hw2057@cumc.columbia.edu (H.-C. Wu), meihlee@ntu.edu.tw (M.-H. Lee), jessica.b.liu@gmail.com (J. Liu), yannbo@mmc.edu.tw (L.-Y. Wang), juten@ms17.hinet.net (S.-N. Lu), chinlan.jen@gmail.com (C.-L. Jen), 087780@mail.fju.edu.tw (S.-L. You), rps1@columbia.edu (R.M. Santella), chencj@gate.sinica.edu.tw (C.-J. Chen). **Results:** In 20 years of follow-up, the follow-up time to newly developed HCC was significantly shorter in participants with higher serum AFB₁-albumin adduct levels in non-B-non-C (p=0.0162) and HCV-infected participants (p<0.0001). Within 8 years of follow-up, HCV infection and AFB₁ exposure were independent risk factors for HCC. Elevated serum AFB₁-albumin adduct levels were significantly associated with an increased risk of HCC newly developed within 8 years of follow-up in non-B-non-C participants with habitual alcohol consumption [crude OR (95% CI) for high vs. low/undetectable levels, 4.22 (1.16–15.37)] and HCV-infected participants [3.39 (1.31–8.77)], but not in non-B-non-C participants without alcohol drinking habit. AFB₁ exposure remained an independent risk predictor for HCV-related HCC after adjustment for other HCC predictors (multivariate-adjusted OR [95% CI], 3.65 [1.32–10.10]). *Conclusions:* AFB₁ exposure contributes to the development of HCC in participants with significant risk factors for cirrhosis including alcohol and HCV infection. © 2018 Elsevier Ltd. All rights reserved. #### 1. Introduction Liver cancer is the sixth most prevalent cancer in the world. Owing to the poor prognosis and a high mortality-to-incidence ratio of 0.95, it is also ranked as the second leading cause of cancer-related death worldwide with 745,000 deaths in 2012 (9.1% of total) [1]. Hepatocellular carcinoma (HCC) is the most common liver cancer (70%–90%) [2]. Viral hepatitis is the major risk factor for HCC. Approximately 80% of HCC cases are associated with chronic infection with hepatitis B virus (HBV) or hepatitis C virus (HCV) [3]. Aflatoxins are a group of naturally occurring mycotoxins produced by Aspergillus fungi [4]. Aflatoxin B₁ (AFB₁) is one of the most potent chemical liver carcinogens and also an important non-viral risk factor for HCC in humans [5,6]. A previous study estimated that about 5-28% of global HCC cases are attributable to aflatoxin exposure [7]. The major route of AFB₁ exposure is ingestion of crops such as corn, peanuts and rice. Liver is the primary target organ of AFB₁ toxicity. AFB₁ is preliminarily metabolised and activated by cytochrome P450 enzymes. The epoxidation of AFB₁ results in the highly active AFB₁ 8,9-exo-epoxide which can covalently interact with DNA to form promutagenic AFB₁-N7-guanine adducts. AFB₁-N7-guanine adducts are released and subsequently excreted in the urine [4]. AFB₁ 8,9-exo-epoxide can also bind to proteins including albumin to form AFB₁-albumin adducts [8]. AFB₁-associated risk of HCC has been primarily investigated in populations with a high prevalence of HBV infection [9]. Several cohort studies have demonstrated the strong synergistic interaction between chronic HBV infection and AFB₁ exposure [10–13]. The relative risk (RR) of developing HCC was much higher for individuals with both HBsAg seropositivity and detectable urinary levels of aflatoxin metabolites (RR [95% CI], 59.4 [16.6–212.0]) than those with detectable urinary levels of aflatoxin metabolites alone (RR [95% CI], 3.4 [1.1–10.0]) and those with HBsAg seropositivity alone (RR [95% CI], 7.3 [2.2–24.4]) when compared with those without these two risk factors as the referent (RR = 1.0) [13]. However, the hepatocarcinogenicity of AFB₁ has rarely been studied in populations with HCV infection and those without HBV and HCV infection (non-B-non-C). Biomarkers of AFB₁ exposure include aflatoxin M₁, aflatoxin-mercapturic acid, and AFB₁-N⁷-guanine adducts in urine as well as AFB₁-albumin adducts in serum [14,15]. Aflatoxin-DNA and aflatoxin-protein adducts are the products of damages to critical molecular targets, which may be used as markers for the biologically effective dose of aflatoxin exposure. In addition to a long half-life of 3-weeks, aflatoxin-albumin adducts in serum samples have also been shown to be stable after long-term storage (at least 25 years) [16], which makes aflatoxin-albumin adducts a suitable biomarker for epidemiological studies. In Taiwan, the estimated prevalence of antibody against HCV (anti-HCV) is 4.9% in the general population [17,18]. We enrolled a Community-based Cancer Screening Project (CBCSP) cohort in 1991–1992, and all the participants were examined for their serostatus of HBV surface antigen (HBsAg) and anti-HCV. In addition, participants were followed up for newly diagnosed HCC until 2011. In this case-control study nested in the CBCSP cohort, baseline serum AFB₁-albumin adduct levels were measured to evaluate the AFB₁ exposure in HBsAg-seronegative participants. We aimed to investigate the impact of AFB₁ exposure on the onset time and risk of HCC in HCV-infected and non-B-non-C participants. #### 2. Materials and methods #### 2.1. Study cohort Study participants were selected from the CBCSP cohort established in 1991–1992. A total of 23,820 residents ## Download English Version: # https://daneshyari.com/en/article/8439569 Download Persian Version: https://daneshyari.com/article/8439569 <u>Daneshyari.com</u>