Nonlinear Analysis 70 (2009) 711-718

On the existence and uniqueness for higher order periodic boundary value problems ${ }^{\text {n }}$

Yongxiang Li
Department of Mathematics, Northwest Normal University, Lanzhou 730070, People's Republic of China

Received 2 March 2007; accepted 8 January 2008

Abstract

This paper discusses the existence and uniqueness for the n th-order periodic boundary value problem $$
\begin{aligned} & L_{n} u(t)=f(t, u(t)), \quad 0 \leq t \leq 2 \pi \\ & u^{(i)}(0)=u^{(i)}(2 \pi), \quad i=0,1, \ldots, n-1, \end{aligned}
$$ where $L_{n} u(t)=u^{(n)}(t)+\sum_{i=0}^{n-1} a_{i} u^{(i)}(t)$ is an n th-order linear differential operator, $n \geq 2$, and $f:[0,2 \pi] \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous. In the case that L_{n} has an even order derivative, we present some new spectral conditions for the nonlinearity $f(t, u)$ to guarantee the existence and uniqueness. These spectral conditions allow $f(t, u)$ to be a superlinear growth, and are the extension for the spectral separation condition presented recently in [Y. Li, Existence and uniqueness for higher order periodic boundary value problems under spectral separation conditions, J. Math. Anal. Appl. 322 (2) (2006) 530-539].

(c) 2008 Elsevier Ltd. All rights reserved.

Keywords: n th-order PBVP; Existence and uniqueness; Spectral condition; Normal operator; Fixed-point theorem
MR Subject Classification: 34B15; 34C25

1. Introduction and main results

In this paper, we develop the existence and uniqueness results in [11] for the n th-order periodic boundary value problem (PBVP)

$$
\left\{\begin{array}{l}
L_{n} u(t)=f(t, u(t)), \quad 0 \leq t \leq 2 \pi, \tag{1}\\
u^{(i)}(0)=u^{(i)}(2 \pi), \quad i=0,1, \ldots, n-1,
\end{array}\right.
$$

where $L_{n} u(t)=u^{(n)}(t)+\sum_{i=0}^{n-1} a_{i} u^{(i)}(t)$ is an n th-order linear differential operator, $a_{i} \in \mathbb{R}, i=0,1 \ldots, n-1$, $n \geq 2, f:[0,2 \pi] \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous.

The special case of PBVP (1) for $n=2$, the second-order periodic boundary value problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)=f(t, u(t)), \quad 0 \leq t \leq 2 \pi, \tag{2}\\
u(0)=u(2 \pi), \quad u^{\prime}(0)=u^{\prime}(2 \pi)
\end{array}\right.
$$

[^0]has been widely investigated by many authors. One of the well-known results is that if f satisfies the nonresonance condition
$$
-(N+1)^{2}+\varepsilon \leq f_{u}(t, u) \leq-N^{2}-\varepsilon,
$$
where N is a nonnegative integer and ε is a positive constant, the $\operatorname{PBVP}(2)$ has a unique solution, see [1].
In [2], Cong extended this result to the periodic boundary value problem of the even order differential equation
\[

\left\{$$
\begin{array}{l}
u^{(2 n)}(t)+\sum_{j=1}^{n-1} c_{j} u^{(2 j)}(t)=f(t, u(t)), \quad t \in[0,2 \pi] \tag{3}\\
u^{(i)}(0)=u^{(i)}(2 \pi), \quad i=0,1, \ldots, 2 n-1,
\end{array}
$$\right.
\]

(to be rewritten) and showed that if the condition

$$
\begin{aligned}
0 & \leq N^{2 n}+\sum_{j=1}^{n-1}(-1)^{j-n} c_{j} N^{2 j}+\varepsilon \\
& \leq(-1)^{n} f_{u}(t, u) \\
& \leq(N+1)^{2 n}+\sum_{j=1}^{n-1}(-1)^{j-n} c_{j}(N+1)^{2 j}-\varepsilon
\end{aligned}
$$

holds for a nonnegative integer N and a positive constant ε, the PBVP (3) has a unique solution. Recently, this result has been extended to a more general even order differential equation by Chen and O'Regan in [15].

In [3], Cong, Huang and Shi considered the periodic boundary value problem of the odd order differential equation

$$
\left\{\begin{array}{l}
u^{(2 n+1)}(t)+\sum_{j=0}^{n-1} c_{j} u^{(2 j+1)}(t)=f(t, u(t)), \quad t \in[0,2 \pi] \tag{4}\\
u^{(i)}(0)=u^{(i)}(2 \pi), \quad i=0,1, \ldots, 2 n
\end{array}\right.
$$

Under the condition that

$$
m \leq\left|f_{u}(t, u)\right| \leq M, \quad \forall(t, u) \in[0,2 \pi] \times \mathbb{R},
$$

(where m and M are positive constants) and other assumptions they obtained the existence and uniqueness results for the PBVP (4).

In a recent paper [11], the present author extends and improves the main results in [2] and [3] mentioned above. The new results concern the spectrum $\sigma\left(L_{n}\right)$ of L_{n} in periodic boundary condition, which is given by

$$
\begin{equation*}
\sigma\left(L_{n}\right)=\left\{P_{n}(k \mathbf{i}) \mid k=0, \pm 1, \pm 2, \ldots\right\}, \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{n}(\lambda)=\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{1} \lambda+a_{0} \tag{6}
\end{equation*}
$$

is the eigenpolynomial of differential operator L_{n} and \mathbf{i} is the imaginary unit.
For $\mu \in \mathbb{C}$ and $R>0$, we use $\bar{B}(\mu, R)$ to denote the closed circle in complex plane \mathbb{C} with centre μ and radius R. We introduce the notation of the difference quotient set

$$
\begin{equation*}
\Delta(f):=\left\{\left.\frac{f(t, u)-f(t, v)}{u-v} \right\rvert\, t \in I, u, v \in \mathbb{R}, u \neq v\right\} \tag{7}
\end{equation*}
$$

here $I=[0,2 \pi]$. In [11] the following existence and uniqueness theorem is obtained:
Theorem A. Let $f: I \times \mathbb{R} \rightarrow \mathbb{R}$ be continuous. If there exist $\mu \in \mathbb{R}$ and $R>0$ such that

$$
\begin{equation*}
\Delta(f) \subset \bar{B}(\mu, R), \quad \bar{B}(\mu, R) \cap \sigma\left(L_{n}\right)=\emptyset \tag{8}
\end{equation*}
$$

then the $P B V P$ (1) has a unique solution.

https://daneshyari.com/en/article/843959

Download Persian Version:

https://daneshyari.com/article/843959

Daneshyari.com

[^0]: ${ }^{*}$ Research supported by the NNSF of China (10671158) and the NSFs of Gansu Province (2007GS03669, 3ZS061-A25-015).
 E-mail address: liyx@nwnu.edu.cn.

