

Available online at www.sciencedirect.com

Nonlinear Analysis 70 (2009) 719-734

www.elsevier.com/locate/na

Viscosity approximation methods for countable families of nonexpansive mappings in Banach spaces

Wataru Takahashi*

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo, 152-8552, Japan

Received 24 January 2007; accepted 8 January 2008

Abstract

Let *C* be a nonempty closed convex subset of a Banach space *E* and let $\{S_n\}$ be a family of nonexpansive mappings of *C* into itself such that the set of common fixed points of $\{S_n\}$ is nonempty. We first introduce a sequence $\{x_n\}$ of *C* defined by $x_1 = x \in C$ and

 $x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) S_n x_n \quad \text{for all } n \in \mathbb{N},$

where $\{\alpha_n\} \subset (0, 1)$ and f is a contraction of C into itself. Further, we give the conditions of $\{\alpha_n\}$ and $\{S_n\}$ under which $\{x_n\}$ converges strongly to a common fixed point of $\{S_n\}$. This result generalizes the strong convergence theorem for nonexpansive mappings by Suzuki [T. Suzuki, A sufficient and necessary condition for Halpern-type strong convergence to fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 135 (2007) 99–106] and the strong convergence theorem for accretive operators by Kamimura and Takahashi [S. Kamimura, W. Takahashi, Weak and strong convergence of solutions to accretive operator inclusions and applications, Set-Valued Anal. 8 (2000) 361–374], simultaneously. Using this result, we improve and extend the two above-mentioned results.

© 2008 Elsevier Ltd. All rights reserved.

MSC: 47H06; 47H09; 47H10

Keywords: Banach space; Nonexpansive mapping; Strong convergence theorem; Resolvent; Iteration; Fixed point; Accretive operator

1. Introduction

Throughout this paper, let *E* be a real Banach space with norm $\|\cdot\|$ and let \mathbb{N} be the set of all positive integers. Let *C* be a nonempty closed convex subset of *E*. Then, a mapping $T : C \to C$ is called nonexpansive if

 $||Tx - Ty|| \le ||x - y|| \quad \text{for all } x, y \in C.$

We denote by F(T) the set of fixed points of T. On the other hand, an operator $A \subset E \times E$ is called accretive if for $(x_1, y_1), (x_2, y_2) \in A$, there exists $j \in J(x_1 - x_2)$ such that $(y_1 - y_2, j) \ge 0$, where J is the duality mapping on E. For an accretive operator $A \subset E \times E$ and r > 0, we can define a mapping $J_r : R(I + rA) \rightarrow D(A)$ by $J_r = (I + rA)^{-1}$,

* Fax: +81 03 5734 3208.

E-mail address: wataru@is.titech.ac.jp.

⁰³⁶²⁻⁵⁴⁶X/\$ - see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2008.01.005

where R(I + rA) and D(A) are the range of I + rA and the domain of A, respectively. An accretive operator A is said to be *m*-accretive if R(I + rA) = E for all r > 0. Recently, Suzuki [32] proved the following strong convergence theorem for nonexpansive mappings in a Banach space; see also [38,29,35,40].

Theorem 1.1. Let *E* be a reflexive Banach space with a uniformly Gatêaux differentiable norm. Let *C* be a nonempty closed convex subset of *E* which has the fixed-point property for nonexpansive mappings and let $T : C \to C$ be a nonexpansive mapping such that F(T) is nonempty. Define a sequence $\{x_n\}$ of *C* as follows: $x_1, u \in C$ and

$$x_{n+1} = \alpha_n u + (1 - \alpha_n)((1 - \lambda)x_n + \lambda T x_n) \quad \text{for all } n \in \mathbb{N},$$

where $\lambda \in (0, 1)$ and $\{\alpha_n\} \subset (0, 1)$ satisfies the following conditions:

$$\alpha_n \to 0 \quad and \quad \sum_{n=1}^{\infty} \alpha_n = \infty.$$

Then, the sequence $\{x_n\}$ converges strongly to a fixed point of T.

Kamimura and Takahashi [9] also proved the following strong convergence theorem for accretive operators in a Banach space; see also [2,3,8,14,19,22,27,30].

Theorem 1.2. Let *E* be a reflexive Banach space with a uniformly Gatêaux differentiable norm which has the fixedpoint property for nonexpansive mappings. Let $A \subset E \times E$ be an *m*-accretive operator with $A^{-1}0 \neq \emptyset$. Define a sequence $\{x_n\}$ of *E* as follows: $x_1, u \in E$ and

$$x_{n+1} = \alpha_n u + (1 - \alpha_n) J_{t_n} x_n$$
 for all $n \in \mathbb{N}$,

where $\{\alpha_n\} \subset (0, 1)$ and $\{t_n\} \subset (0, \infty)$ satisfy the following conditions:

$$\alpha_n \to 0$$
, $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $t_n \to \infty$.

Then, the sequence $\{x_n\}$ converges strongly to $u \in A^{-1}0$.

In this paper, motivated by Suzuki [32], Kamimura and Takahashi [9], Moudafi [15] and Xu [39], we prove a strong convergence theorem for countable families of nonexpansive mappings in a Banach space which unifies the results of [32,9]. Using this result, we improve and extend the results of [32,9]. The proof is closely related to Takahashi [36], Nakajo, Shimoji and Takahashi [18], and Kikkawa and Takahashi [10,11].

2. Preliminaries

Let *E* be a real Banach space with norm $\|\cdot\|$ and let E^* denote the dual of *E*. We denote the value of $y^* \in E^*$ at $x \in E$ by $\langle x, y^* \rangle$. The duality mapping *J* from *E* into 2^{E^*} is defined by

$$Jx = \{x^* \in E^* : \langle x, x^* \rangle = \|x\|^2 = \|x^*\|^2\}$$

for every $x \in E$. Let $U = \{x \in E : ||x|| = 1\}$. The norm of *E* is said to be Gâteaux differentiable if for each $x, y \in U$, the limit

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t} \tag{2.1}$$

exists. In the case, *E* is called smooth. The norm of *E* is said to be uniformly Gâteaux differentiable if for each $y \in U$, the limit (2.1) is attained uniformly for $x \in U$. We know that if *E* is smooth, then the duality mapping *J* is single valued. Further, if the norm of *E* is uniformly Gâteaux differentiable, then *J* is uniformly norm to weak* continuous on each bounded subset of *E*; see [25,33]. Let *C* be a closed convex subset of *E*. A mapping $T : C \to C$ is said to be nonexpansive if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$. We denote by F(T) the set of all fixed points of *T*. Let *I* denote the identity operator on *E*. An operator $A \subset E \times E$ with domain $D(A) = \{x \in E : Az \neq \emptyset\}$ and

Download English Version:

https://daneshyari.com/en/article/843960

Download Persian Version:

https://daneshyari.com/article/843960

Daneshyari.com