



www.elsevier.com/locate/na

Boundedness and blowup for nonlinear degenerate parabolic equations

Shaohua Chen

Department of Math, Physics and Geology, Cape Breton University, Sydney, Nova Scotia, Canada, B1P 6L2

Received 15 April 2007; accepted 18 January 2008

Abstract

The author deals with the quasilinear parabolic equation $u_t = [u^{\alpha} + g(u)]\Delta u + bu^{\alpha+1} + f(u, \nabla u)$ with Dirichlet boundary conditions in a bounded domain Ω , where f and g are lower-order terms. He shows that, under suitable conditions on f and g, whether the solution is bounded or blows up in a finite time depends only on the first eigenvalue of $-\Delta$ in Ω with Dirichlet boundary condition. For some special cases, the result is sharp.

© 2008 Elsevier Ltd. All rights reserved.

Keywords: Porous medium equation; Quasilinear parabolic equation; Global existence; Blowup solutions

In this paper we consider the following quasilinear parabolic equation:

$$u_t = [u^{\alpha} + g(u)]\Delta u + bu^{\alpha+1} + f(u, \nabla u), \quad t > 0, x \in \Omega,$$
(1)

with the initial and boundary conditions

$$\begin{cases} u(x,t) = 0, & t > 0, x \in \partial \Omega, \\ u(x,0) = \phi(x) > 0, & x \in \Omega, \end{cases}$$
 (2)

where $\Omega \subset \mathbb{R}^n$ is a bounded domain with smooth boundary $\partial \Omega$.

The study of (1) and (2) is of great interest due to its applications. If g(0) = 0, (1) is the well-known porous medium equation with a source and a convection term (see [1,5,7,8,18,20,22]). In the simple cases where g = f = 0, many authors (see [2,15,22]) proved that whether the solution exists globally or blows up in a finite time depends only on the first eigenvalue of $-\Delta$ in the domain Ω with Dirichlet boundary condition.

Ding et al. [11,12] discussed the general quasilinear parabolic equations and obtained some interesting blowup results. Suzuki [23] considered the following equation

$$u_t = \Delta u^m + a \cdot \nabla u^q + u^p$$

where $1 \le m and <math>(m+1)/2 \le q < (m+p)/2$. He obtained a universal bound which is independent of the initial data for all global nonnegative solutions of the Dirichlet problem. Chen and Yu [5] dealt

E-mail address: george_chen@cbu.ca.

with the following equation

$$u_t = \nabla \cdot (g(u)\nabla u) + h(u, \nabla u) + f(u)$$

with $u|_{\partial\Omega} = 0$, $u(x, 0) = \phi(x)$. If f, g and h are polynomials with proper degrees and proper coefficients, they showed that the blowup property depends only on the first eigenvalue of $-\Delta$ in Ω with Dirichlet boundary condition. For a special case, they obtain a sharp result. Many authors also discussed the blowup properties of local or nonlocal sources or degenerate parabolic systems and obtained similar interesting results (see [6,9,10,13,14,16,19,21]).

In this paper, we use a new method to obtain both lower and upper bound for the solution of (1). In this method, we estimate the integral of a ratio of one solution to the other. This method shows successful in proving existence and blowup problems (see [3,5]), especially, the problems where the comparison principle is failed (see [4]). We first prove the boundedness of the solutions and then the blowup properties under different conditions on f and g for the problem (1) and (2). In some special cases, the result is sharp.

Throughout this paper, we denote by $\lambda_1 = \lambda_1(\Omega)$ the first eigenvalue of

$$\Delta \psi + \lambda_1 \psi = 0 \quad \text{with } \psi|_{\partial \Omega} = 0, \tag{3}$$

where ψ is the first normalized eigenfunction.

Theorem 1. Suppose that, for any ξ , $\varepsilon > 0$ and u > 0, there exist positive constants $c = c(\varepsilon)$ and c_0 such that

$$|f(u,\xi)| \le \varepsilon u^{\alpha-1} (u^2 + |\xi|^2) + c(\varepsilon) u^{-\sigma},\tag{4}$$

and

$$g(u) \ge c_0 u^{\beta}$$
 and $g(u) \ge c_0 u g'(u) \ge 0$, (5)

where $\beta \geq 0$ and $\sigma \geq 0$. If $b < \lambda_1$, then, for any initial value $\phi(x) \in C_0^{1+\eta}(\overline{\Omega})$ with $\eta > 0$, the solution of the problem (1) and (2) is bounded for all t > 0.

Proof. By Lemma 1 in [5], the solution u is positive in Ω . This guarantees that u is a classical solution as long as u is bounded. By the continuity of the eigenvalues with respect to the domain Ω (see [17]), we can find a small $\delta > 0$ such that $b < \lambda_1 - \delta$ and we can define a domain $D \supset \Omega$ such that $\partial \Omega$ is located inside of D and there exists the first normalized eigenfunction of

$$\Delta\psi_1 + (\lambda_1 - \delta)\psi_1 = 0 \tag{6}$$

in D with $\psi_1|_{\partial D} = 0$. Then ψ_1 is positive in $\overline{\Omega}$. For any positive number n, define

$$w_n(t) = \int_{\Omega} \frac{u^n(x,t)}{\psi_1^{kn}(x)} \mathrm{d}x,\tag{7}$$

where k < 1 satisfying $b < \lambda_1 k - \delta$. Differentiating (7), substituting the equation of (1) into the result integral, integrating by parts and using (4), we have

$$\frac{\mathrm{d}}{\mathrm{d}t}w_{n}(t) = n \int_{\Omega} \frac{u^{n-1}}{\psi_{1}^{kn}} \{ [u^{\alpha} + g(u)] \Delta u + bu^{\alpha+1} + f(u, \nabla u) \} \mathrm{d}x$$

$$\leq -n(n-1+\alpha) \int_{\Omega} \frac{u^{n-2+\alpha}}{\psi_{1}^{kn}} |\nabla u|^{2} \mathrm{d}x + kn^{2} \int_{\Omega} \frac{u^{n-1+\alpha}}{\psi_{1}^{kn+1}} \nabla u \nabla \psi_{1} \mathrm{d}x$$

$$- n(n-1) \int_{\Omega} \frac{u^{n-2}}{\psi_{1}^{kn}} g(u) |\nabla u|^{2} \mathrm{d}x + kn^{2} \int_{\Omega} \frac{u^{n-1}}{\psi_{1}^{kn+1}} g(u) \nabla u \nabla \psi_{1} \mathrm{d}x$$

$$- n \int_{\Omega} \frac{u^{n-1}}{\psi_{1}^{kn}} g'(u) |\nabla u|^{2} \mathrm{d}x + nb \int_{\Omega} \frac{u^{n+\alpha}}{\psi_{1}^{kn}} \mathrm{d}x$$

$$+ n \int_{\Omega} \frac{u^{n-1}}{\psi_{1}^{kn}} [\varepsilon(u^{\alpha+1} + u^{\alpha-1}|\nabla u|^{2}) + c(\varepsilon)u^{-\sigma}] \mathrm{d}x. \tag{8}$$

Download English Version:

https://daneshyari.com/en/article/843989

Download Persian Version:

https://daneshyari.com/article/843989

<u>Daneshyari.com</u>