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Abstract

In this paper, we prove the existence of the (L2@®my, whP(@®Y) N LY (R™))-global attractor for the
p-Laplacian equation u; — div(|VulP~2Vu) + AulP~2u + f(u) = g with a more general nonlinear term
f = fi+a®) frinR" wherea € L1 ([R") N L®°(R") and f], f, satisfy the arbitrary g-order polynomial
growth condition without any restrictionon g, p (¢ > 2, p > 2).
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1. Introduction

In this paper, we prove the existence of global attractors in W7 (R") N L?(R") for the
following p-Laplacian equation:

uy —div(|VulP72Vu) + AulP2u+ fu) =g  inR" x RT, (1.1)
with initial data condition

u(x,0) = uo(x), (1.2)
where p > 2,1 > 0, f = fi+a(x) f>isaC! function which satisfies the following assumptions,

f0)=0, (1.3)
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arlul? = Brlul? < fiwu < yilul? + 81lul?, g >2and p > 2, (1.4)
A>pg1  and  f{(u) > —ci, (1.5)
alul? — B < fr(wu < yalul? + 83, q=>2, (1.6)
frw) > —cs, (1.7)
a € L'(R") N L®[R"), a(x) >0  foranyx € R, (1.8)

where «;, Bi, yi, §; and ¢; (i = 1, 2) are positive constants.
Here g € L*(R") N L*(R"), s satisfies
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It is interesting to note that the nonlinear term f is more general. For example, if f; =0, a is
the characteristic function for a smooth bounded domain {2 C R”, that is,

1 0
ax) = {0’ N ;Q (1.10)

then we see that the assumptions imposed on the nonlinear term f (i.e. f2) in this paper are the
same as in [1,3,19] for the case of bounded domains.

The existence of a global attractor for Eq. (1.1) in a bounded domain {2 has been studied
extensively in many monographs and lectures. In [1], the authors give a more detailed discussion
of this problem, however, the existence of an (L2({2), W(} P (2) N L9(£2))-global attractor

remains unknown for the case 2 < p < n and ¢ > ”"_pp; the authors in [6] obtain that

the corresponding semigroup has an (Lz(.Q), WOl PN L1({2))-global attractor under some
additional conditions, i.e., either assume that p > ’% and that f = hy + h», where h satisfies
(h1,u) > 0 and h; is a global (L2, LZ(Q))-LipSChitZ mapping, or assume that f satisfies
some growth condition such that it can be dominated by the p-Laplacian operator. For some other
results concerning this problem in bounded domains, see [3—6,17,19] and the references therein.

It is well known that when we consider the asymptotic behavior of the solutions in an
unbounded domain, particularly the existence of global attractors, we will face more difficulties
due to the unboundedness of the spatial domain. The most difficult issue is the absence of the
standard compact Sobolev embeddings of several functional spaces. In order to overcome the
difficulty of the noncompact embedding, several methods have been developed. Many authors
employ weighted spaces, locally uniform spaces and bounded continuous functional spaces, see,
e.g., [2,8—10] and the references therein. However, when working in these spaces the initial data
and forcing term are usually assumed to be in corresponding spaces. Recently, in [14,18] the
authors used a suitable cut-off function to decompose the whole space R” into a bounded ball
and its complement, then the asymptotic compactness of the semigroup follows from the compact
Sobolev embedding in the bounded ball and the estimates in its complement. Using this idea, for
Eq. (1.1), the author in [12] obtained the existence of the (L?(R"), L> (R"))-global attractor

when n < p and the existence of the (L?(R"), L = (R™))-global attractor when n > p. But he
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