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Abstract

We consider initial boundary value problems for a third-order nonlinear pseudoparabolic equation with
one space dimension. The boundary condition is given by an integral; the function involved could exhibit
singularities, which distinguishes this nonlocal condition from its Dirichlet or Neumann counterparts. By
means of appropriate elliptic estimates we are able to seek solutions not only in the weighted spaces but
also in the usual Sobolev spaces. The procedure is carried out in a unified way. Our results characterize a
regularity of the pseudoparabolic operator that is different from that of the parabolic operator.
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1. Introduction

In this paper we consider the one-dimensional nonlinear pseudoparabolic equation

ut − (a(x, t)uxt)x = h(x, t, u, ux , ux x), α < x < β, 0 < t < T (1.1)

with the initial condition

u(x, 0) = u0(x), α ≤ x ≤ β. (1.2)

Two types of nonlocal boundary conditions will be studied:

u(α, t) = 0,

∫ β

α

u(x, t) dx = 0, 0 ≤ t ≤ T (1.3)
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and ∫ β

α

u(x, t) dx = 0,

∫ β

α

xu(x, t) dx = 0, 0 ≤ t ≤ T . (1.4)

We introduce some function spaces needed in this paper. Let X be a real Banach space and let
u : (0, T ) → X be an abstract function. We denote by L2(0, T ; X) the standard Banach space
with the norm

‖u‖L2(0,T ;X) =
(∫ T

0
‖u(t)‖2

X dt

)1/2

and by H 1(0, T ; X) the Banach space of all u ∈ L2(0, T ; X) with ut ∈ L2(0, T ; X). The norm
in H 1(0, T ; X) is

‖u‖H1(0,T ;X) =
(
‖u‖2

L2(0,T ;X)
+ ‖ut‖2

L2(0,T ;X)

)1/2
.

Let W 1,∞(α, β), H i(α, β) (i = 1, 2, 3) and H 0(α, β) = L2(α, β) be the standard Sobolev
spaces [1]. Their norms are denoted by ‖ · ‖1,∞, ‖ · ‖i and ‖ · ‖0, respectively.

We denote by L2
wt (α, β) the weighted L2-space with inner product

〈u, v〉wt =
∫ β

α

(β − x)u(x)v(x) dx

and by H i
wt(α, β) (i = 1, 2) the weighted Sobolev space with inner product

〈u, v〉i,wt =
i∑

j=0

〈u( j ), v( j )〉wt ,

where u( j ) is the j th derivative of u and u(0) = u.
For the relationship of these spaces, we have [12, Lemma 2.1]

H 2
wt(α, β) ⊂ H 1(α, β) ⊂ H 1

wt (α, β) ⊂ L2(α, β) ⊂ L2
wt (α, β).

We shall assume that:

(H1) a ∈ L∞(0, T ; W 1,∞(α, β)) and there exist positive constants a1 and a2 such that

0 < a1 ≤ a(x, t) ≤ a2, ∀(x, t) ∈ [α, β] × [0, T ].
(H2) h : [α, β] × [0, T ] × R

3 → R and there exists a positive constant K such that

|h(x, t, y1
1 , y1

2 , y1
3) − h(x, t, y2

1 , y2
2 , y2

3)| ≤ K (|y1
1 − y2

1 | + |y1
2 − y2

2 | + |y1
3 − y2

3 |),
for x ∈ [α, β], t ∈ [0, T ], y j

i ∈ R, i = 1, 2, 3, j = 1, 2.

By using appropriate elliptic estimates we are able to seek solutions not only in the weighted
spaces as in [4,5] but also in the usual Sobolev spaces. This procedure will be carried out in a
unified way. The main results of this paper are the following two theorems.

Theorem 1.1. Assume that the assumptions (H1) and (H2) are satisfied. If u0 ∈ H 2(α, β) such
that

u0(α) = 0,

∫ β

α

u0(x) dx = 0,
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