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Abstract

In this paper we study the global attractors for von Karman equations with nonlinear interior dissipation.
We prove regularity and then establish finite dimensionality of the global attractors without assuming large
values for the damping parameter.
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1. Introduction

The main objective of this paper is to study the regularity and finite dimensionality of the
global attractor for the following von Karman system:

wt t +�2w + g(wt) = [F(w),w] + h in (0,+∞)× Ω (1.1)

�2F(w) = −[w,w] in (0,+∞)× Ω (1.2)

w = ∂w

∂ν
= F = ∂F

∂ν
= 0 on (0,+∞)× ∂Ω (1.3)

w(0, ·) = w0, wt (0, ·) = w1 in Ω (1.4)
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where Ω is a bounded smooth domain in R2, the vector ν denotes an outward normal, h ∈ L2(Ω)
and the von Karman bracket is given by

[u, v] ≡ ∂2u

∂x2
1

∂2v

∂x2
2

+ ∂2u

∂x2
2

∂2v

∂x2
1

− 2
∂2u

∂x1∂x2

∂2v

∂x1∂x2
.

The damping function g ∈ C1(R) satisfies the conditions

g(0) = 0, 0 < m ≤ ǵ(s), � s ∈ R (1.5)

and

ǵ(s) ≤ M(1 + sg(s)), � s ∈ R. (1.6)

In the case where g(·) is linear, the weak attractors for (1.1)–(1.4) were studied in [1], and
the existence and finite dimensionality of the weak attractors were established for large values of
the damping parameter. The well-posedness of weak solutions of problem (1.1)–(1.4) has been
established (see [2,3]) by using the sharp regularity of Airy’s stress function obtained in [4]. In the
case of nonlinear dissipation, the global attractors for the problem (1.1)–(1.4) were investigated
in [2,3] and references therein. In these articles the existence and finite dimensionality of
attractors have also been proved for large values of the damping parameter. Recently in [5] the
existence of a global attractor for (1.1)–(1.4) is shown without assuming large values of the
damping parameter.

Our main goal in this paper is to prove regularity and then establish finite dimensionality of
the global attractor for the problem (1.1)–(1.4) without assuming large values for the damping
parameter.

2. Preliminaries

Denote the spaces
◦

W s
2 (Ω),W s

2 (Ω) and L2(Ω) by H s
0 , H s , and H respectively. The scalar

product and norm in H are denoted by 〈, 〉 and ‖ · ‖. We also denote the norm in H s by ‖ · ‖s and
introduce the spaces H = H 2

0 × H and H1 = (H 4 ∩ H 2
0 )× H 2

0 . As mentioned above it is known
that under condition (1.5) the solution operator S(t)(w0, w1) = (w(t),wt (t)), t ≥ 0, of problem
(1.1)–(1.4) generates a C0-semigroup on the energy space H (see [2,3]) in which

E(w(t) − v(t))+
∫ t

s

∫
Ω
(g(wt (τ, x))− g(vt (τ, x)))(wt (τ, x)− vt (τ, x))dxdτ

≤ E(w(s)− v(s))+
∫ t

s
〈[F(w(τ)),w(τ)] − [F(v(τ )), v(τ )], wt (τ )− vt (τ )〉dτ, (2.1)

holds for (w(t),wt (t)) = S(t)(w0, w1) and (v(t), vt (t)) = S(t)(v0, v1), where E(u(t)) =
1
2 (‖�u(t)‖2 + ‖ut (t)‖2) and t ≥ s ≥ 0.

Let N be the set of fixed points of S(t), i.e. N consists of the points (w, 0), where w = w(x)
is a solution of the problem

�2w = [F(w),w] + h in Ω ,
�2F(w) = −[w,w] in Ω ,

w = ∂w

∂ν
= F = ∂F

∂ν
= 0 on ∂Ω .

It is known that N is bounded in H1.



Download English Version:

https://daneshyari.com/en/article/844072

Download Persian Version:

https://daneshyari.com/article/844072

Daneshyari.com

https://daneshyari.com/en/article/844072
https://daneshyari.com/article/844072
https://daneshyari.com

