

Available online at www.sciencedirect.com

Nonlinear

www.elsevier.com/locate/na

Fractional Sobolev spaces and topology

Pierre Bousquet

UMPA, ENS Lyon, 69007 Lyon, France

Received 24 July 2006; accepted 17 November 2006

Abstract

Consider the Sobolev class $W^{s,p}(M,N)$ where M and N are compact manifolds, and $p \ge 1$, $s \in (0, 1+1/p)$. We present a necessary and sufficient condition for two maps u and v in $W^{s,p}(M,N)$ to be continuously connected in $W^{s,p}(M,N)$. We also discuss the problem of connecting a map $u \in W^{s,p}(M,N)$ to a smooth map $f \in C^{\infty}(M,N)$. © 2006 Elsevier Ltd. All rights reserved.

Keywords: Fractional Sobolev spaces between manifolds; Homotopy

1. Introduction

Let M and N be compact connected smooth boundaryless Riemannian manifolds. Throughout the paper we assume that they are isometrically embedded into \mathbb{R}^a and \mathbb{R}^l respectively and that $m := \dim M > 2$. Our functional framework is the Sobolev space

$$W^{s,p}(M, N) = \{ u \in W^{s,p}(M, \mathbb{R}^l) : u(x) \in N \text{ a.e.} \},$$

with $1 \le p < \infty, 0 < s$. The space $W^{s,p}(M,N)$ is equipped with the standard metric $d(u,v) = ||u-v||_{W^{s,p}}$. The main purpose of this paper is to determine whether or not $W^{s,p}(M,N)$ is path connected and if not, when two elements u and v in $W^{s,p}(M,N)$ can be continuously connected in $W^{s,p}(M,N)$; that is, when there exists $H \in C^0([0,1], W^{s,p}(M,N))$ such that H(0) = u and H(1) = v. If this is the case, we say that 'u and v are $W^{s,p}$ connected' (or $W^{s,p}$ homotopic).

Homotopy theory in the framework of Sobolev spaces is essential when studying certain problems in the calculus of variations. This is the case when the admissible functions are defined on a manifold M into a manifold N. One may hope to find multiple minimizers to these problems, ideally one in each homotopy class (see [15,16] and also [3]).

The topology of $W^{s,p}(M,N)$ depends on two features of the problem, namely the topology of M and N, and the value of s and p. When s = 1, the study of the topology of $W^{1,p}(M, N)$ was initiated in [4]. The analysis of homotopy classes (for s = 1) was subsequently tackled in [9] (see also [15,16] for related and earlier results). These results have been generalized to $W^{s,p}(M,N)$ for non-integer values of s and 1 when M is a smooth,bounded, connected open set in a Euclidean space and when $N=S^1$ (see [5]). In this case, the proofs exploit in an essential way the fact that the target manifold is S^1 . In contrast, our main concern is to determine to what extent

E-mail address: Pierre.Bousquet@umpa.ens-lyon.fr.

the methods of [9] and the tools of [4] can be adapted to the case $s \neq 1$. Throughout the paper, we assume that 0 < s < 1 + 1/p or $sp > \dim M$.

Our first result gives some conditions which imply that $W^{s,p}(M, N)$ is path connected:

Theorem 1. Let 0 < s < 1 + 1/p. Then the space $W^{s,p}(M, N)$ is path connected when sp < 2.

When s=1, this result was proved in [4], where the condition p<2 (for s=1) is seen to be sharp. For instance, $W^{1,2}(S^1\times \Lambda,S^1)$, where Λ is any open connected set, is not path connected.

In the case $sp \ge 2$, we have:

Theorem 2. Assume that 0 < s < 1 + 1/p, $2 \le sp < \dim M$ and that there exists $k \in \mathbb{N}$ with $k \le [sp] - 1$ such that $\pi_i(M) = 0$ for $1 \le i \le k$, $\pi_i(N) = 0$ for $k + 1 \le i \le [sp] - 1$. Then the space $W^{s,p}(M,N)$ is path connected.

The case s = 1 of the above theorem is Corollary 1.1 in [9].

More generally, it is natural to compare the connected components of $W^{s,p}(M, N)$ to those of $C^0(M, N)$. In certain cases, this is indeed possible:

Theorem 3. (a) If $sp \ge \dim M$ then $W^{s,p}(M,N)$ is path connected if and only if $C^0(M,N)$ is path connected. (b) The $W^{s,p}$ homotopy classes are in bijection with the C^0 homotopy classes when 0 < s < 1 + 1/p, $2 \le sp < \dim M$ and $\pi_i(N) = 0$ for $[sp] \le i \le \dim M$.

Statement (a) is well known and can be proved as in the appendix of [4]. Part (b) for s = 1 was obtained in [9], Corollary 5.2.

When s=1, Theorems 2 and 3 are particular cases of a more general result in [9] which asserts that there is a one-to-one map from the connected components of $W^{1,p}(M,N)$ into the connected components of $C^0(M^{[p]-1},N)$. Here, $M^{[p]-1}$ denotes a [p]-1 skeleton of M. This may be re-expressed as follows: two maps u and v in $W^{1,p}(M,N)$ are $W^{1,p}$ homotopic if and only if u is [p]-1 homotopic to v. For an accurate definition of [p]-1 homotopy, one should refer to [9] or to Section 6. Roughly speaking, this means that for a generic [p]-1 skeleton $M^{[p]-1}$ of M, $u|_{M^{[p]-1}}$ and $v|_{M^{[p]-1}}$ are homotopic. This makes sense because for a generic [p]-1 skeleton, u and v are both w0 on these skeletons and hence continuous, by the Sobolev embedding. There is a corresponding version of this result in which w1,v1 is replaced by w3,v2.

Theorem 4. Assume that 0 < s < 1 + 1/p, $2 \le sp < \dim M$. Let $u, v \in W^{s,p}(M, N)$. Then u and v are $W^{s,p}$ connected if and only if u is [sp] - 1 homotopic to v.

The techniques in [9] can be adapted in order to prove not only Theorem 4 but also the more general result where the condition $2 \le sp < \dim M$ is replaced by: $0 < sp < \dim M$ and $sp \ne 1$. In turn, this last result implies Theorem 1 when sp < 2, $sp \ne 1$. However, the case sp = 1 seems delicate to handle via these techniques. This is why we give a proof of Theorem 1 based on the tools of [4]. Besides its independent interest, it turns out that the technical core of the proof of Theorem 1 is also the technical core of the proof of Theorem 4. Furthermore, the techniques in [4] are more likely to allow some extensions to the case s > 1 + 1/p.

Another strategy for showing that two elements in $W^{s,p}(M, N)$ are $W^{s,p}$ connected is based on the property P(u) defined for any $u \in W^{s,p}(M, N)$ by:

(P(u)) The map u is $W^{s,p}$ homotopic to some $\tilde{u} \in C^{\infty}(M, N)$.

We proceed to explain the interest of this property. Assume that P(u) and P(v) are true, where $u, v \in W^{s,p}(M, N)$, and that \tilde{u} and \tilde{v} are C^0 homotopic. So, there exists $F \in C^{\infty}([0, 1] \times M, N)$ such that $F(0, \cdot) = \tilde{u}$ and $F(1, \cdot) = \tilde{v}$, which implies that \tilde{u} and \tilde{v} are $W^{s,p}$ homotopic. Finally, u and v are $W^{s,p}$ homotopic. This shows the importance of the property P.

Theorem 5. Each $u \in W^{s,p}(M,N)$ satisfies P(u) when

- (a) $sp > \dim M$,
- (b) 0 < sp < 2, 0 < s < 1 + 1/p,
- (c) dim M = 2, 0 < s < 1 + 1/p,
- (d) $M = S^m$, 0 < s < 1 + 1/p,

Download English Version:

https://daneshyari.com/en/article/844192

Download Persian Version:

https://daneshyari.com/article/844192

Daneshyari.com